admin / 23.10.2018

Техническая кибернетика

Кибернетика список научных статей

  • Использование ПЛП-поиска в задачах проектирования динамических систем машин 2016 / Статников Исак Наумович, Фирсов Георгий Игоревич
  • Графовое моделирование линейных непрерывных систем автоматического управления с запаздыванием

    Графовое моделирование линейных систем с запаздыванием на основе совокупного применения теории дифференциальных уравнений с отклоняющимся аргументом, аппарата динамических графов и рассмотрения систем с позиций динамичности структур и процессов позволяет получить алгоритм расчёта процессов в…

    2016 / Убайдуллаева Шахноз Рахимджановна

  • Математическая модель и принципы регулирования процесса экстракции раститель-ного сырья с применением сжиженного газа

    В статьи рассмотрена способы получения модели исследуемого объекта. Составленная математическая модель даёт возможность определять коэффициенты передаточной функцией объекта управления первого порядка с задержкой. Для оптимального управления процесса экстракции использован различные принципы…

    2016 / Хабибов Фахриддин Юсупович, Рустамов Карим Каххарович, Абидов Камил Зарипович, Джураев Хайрулла Файзиевич

  • Чувствительность оптимальных фильтров для средств измерений электромеханических систем

    При передаче информационных и управляющих сигналов в электротехнических, электромеханических и мехатронных системах требуется снижение до возможно более низких уровней шумовых помех. Для этого обосновывается в широкой постановке одномерная задача определения чувствительности линейной стационарной…

    2016 / Захаров Олег Владимирович, Кочетков Андрей Викторович, Королев Андрей Альбертович

  • Система управления процессом измельчения руды 2016 / Бойбутаев Санжар Бахритдинович
  • Экспертная оценка стандартов радиосвязи, используемых в правоохранительных органах, методом парных сравнений

    Проведена экспертная оценка стандартов радиосвязи с использованием метода парных сравнений. Разработан алгоритм оценки стандартов радиосвязи в соответствии с установленным критерием оптимальности.

    2016 / Сидоров Александр Викторович, Борисенко Дмитрий Иванович, Щербакова Ирина Владимировна

  • Использование метода динамических графовых моделей для расчета линейных систем с запаздыванием

    Графовое моделирование линейных систем с запаздыванием на основе совокупного применения теории дифференциальных уравнений с отклоняющимся аргументом, аппарата динамических графов и рассмотрения систем с позиций динамичности структур и процессов позволяет получить алгоритм расчёта процессов в…

    2016 / Убайдуллаева Шахноз Рахимджановна, Атаева Зарина Джураевна

  • Сравнительный анализ решения линейного дифференциального уравнения 1- го порядка с запаздыванием методом шагов и методом графовых моделей

    В работе выполнен сравнительный анализ решения линейного дифференциального уравнения 1го порядка с запаздыванием методом шагов и методом графовых моделей. Использование графовой модели в значительной степени упрощает описание и анализ системы, исключает непосредственное интегрирование…

    2016 / Убайдуллаева Шахноз Рахимджановна, Атаева Зарина Джураевна

  • Кластерный анализ данных акустической эмиссии с помощью самоорганизующихся карт Кохонена

    В работе описывается применение алгоритма самоорганизующихся карт Кохонена. Одна из областей, где могут применяться самоорганизующиеся карты кластерный анализ и вычисление закономерностей в акустических данных. Для решения задач этих областей предложен метод решения интеллектуального анализа…

    2015 / Аверин Павел Иванович

  • Анализ эффективности функционирования мягкой модели нечетко-логического вывода

    Рассмотрены вопросы построение нечетких моделей путем настройки функций принадлежности по экспериментальным данным с оценкой параметр среднеквадратического отклонения, наилучшее решение достигается при его минимальном значении.

    2015 / Бобырь Максим Владимирович, Нассер Абдулдаиам Абдулджалил, Абдулджаббар Мухаммед Абдулла

  • Разработка компьютерного тренажера в производсве метилдиэтаноламина 2015 / Кулигина Наталья Олеговна
  • Метод оценки конкурентоспособности автомобилей на основе определения их потребительской привлекательности

    В данной статье рассматривается практическое применение методики комплексной оценки показателей конкурентоспособности легковых автомобилей с точки зрения факторов потребительских предпочтений. В работе предложен метод обработки результатов опроса методами математической статистики и дана…

    2015 / Смирнов Петр Ильич, Пикалев О.Н.

  • Системотехнический анализ и оценка показателей функционирования технических систем управления 2015 / Якубжанова Дилфуза Кадировна
  • Организация хранилища данных для дистанционного практикума по программированию и смежным дисциплинам

    В данной статье описывается организация разработанного хранилища данных для дистанционного практикума по программированию с целью анализа накопленных данных о процессе и результатах электронного обучения.

    2015 / Басалаева Юлия Сергеевна, Ржеуцкая Светлана Юрьевна

  • Особенности распознавания образов на основе сети Хопфилда

    В статье рассмотрены вопросы обучения нейронной сети для распознавания образов. Для этого разработана программа на языке Microsoft Visual Studio 2010 C# для распознавания образов на основе сети Хопфилда.

    2015 / Бобрикова Ксения Анатольевна

  • Применение гибридных нейронных сетей для диагностики

    Рассмотрена возможность применения гибридных нейронных сетей для диагностики заболеваний легких. Предложены архитектуры нейронных сетей с макрослоями блочного типа. Нейронные сети в макрослоях построены на основе вероятностных моделей блочного типа. Окончательное решение о принадлежности к…

    2015 / Артюшков Алексей Юрьевич, Булатников Валентин Альбертович, Брежнев Алексей Викторович

  • Применение логики антонимов в структурировании функции качества

    В статье рассматривается возможность применения логики антонимов в наиболее популярном методе обеспечения баланса между требованиями потребителей и возможностями изготовителяструктурировании функции качества (СФК); обосновывается необходимость отказа от средневзвешенных характеристик при применении …

    2015 / Вологжанина Екатерина Михайловна

  • Канальная трассировка сверхбольших интегральных схем на основе алгоритма косяка рыб

    В статье рассматривается новые механизмы решения задачи канальной трассировки, использующие принципы поведения живой природы. Процесс поиска оптимального решения основан на имитации поведения рыб. Рассматривается способ представления решения задачи канальной трассировки, а также эвристики,…

    2015 / Галиев Айнур Ильдарович, Чермошенцев Сергей Федорович

  • Синтез системы автоматического регулирования поцесса приготовления теста

    В данной работе была разработана система автоматического регулирования процесса приготовления теста. Был произведен выбор приборов и средств автоматизации с конкретным подбором датчиков и выбором контроллера. Также была составлена математическая модель тестомесительной машины и проведена…

    2015 / Тураева Гулчирай Шералиевна, Джураев Хайрулла Файзиевич

  • Синтез устойчивых режимов работы гидравлических виброисточников

    В статье приведены результаты аналитических исследований по динамике и устойчивости движения гидравлических виброисточников без обратной связи.

    2001 / С. К. Ельмуратов, А. Ф. Ельмуратова

Техническая кибернетика

Смотреть что такое «Техническая кибернетика» в других словарях:

  • ТЕХНИЧЕСКАЯ КИБЕРНЕТИКА — отрасль науки, изучающая технические системы управления. Важнейшие направления исследований разработка и создание автоматических и автоматизированных систем управления, а также автоматических устройств и комплексов для передачи, переработки и… … Большой Энциклопедический словарь

  • техническая кибернетика — отрасль науки, изучающая технические системы управления. Важнейшие направления исследования разработка и создание автоматических и автоматизированных систем управления, а также автоматических устройств и комплексов для передачи, переработки и… … Энциклопедический словарь

  • ТЕХНИЧЕСКАЯ КИБЕРНЕТИКА — см. Кибернетика техническая … Большой энциклопедический политехнический словарь

  • КИБЕРНЕТИКА — (от греч. kybernetike – искусство управления) – наука о самоуправляющихся машинах, в частности о машинах с электронным управлением («электронный мозг»). Кибернетика получила самое широкое распространение в последней трети 20 в. и сейчас… … Философская энциклопедия

  • КИБЕРНЕТИКА ТЕХНИЧЕСКАЯ — см. Техническая кибернетика … Большой Энциклопедический словарь

  • Кибернетика техническая — научное направление, связанное с применением единых для кибернетики (См. Кибернетика) идей и методов при изучении технических систем управления. К. т. научная основа комплексной автоматизации производства, разработки и создания систем… … Большая советская энциклопедия

  • кибернетика техническая — см. Техническая кибернетика. * * * КИБЕРНЕТИКА ТЕХНИЧЕСКАЯ КИБЕРНЕТИКА ТЕХНИЧЕСКАЯ, см. Техническая кибернетика (см. ТЕХНИЧЕСКАЯ КИБЕРНЕТИКА) … Энциклопедический словарь

  • Кибернетика — I Кибернетика (от греч. kybernetike искусство управления, от kybernáo правлю рулём, управляю) наука об управлении, связи и переработке информации (См. Информация). Предмет кибернетики. Основным объектом исследования в К. являются … Большая советская энциклопедия

  • Кибернетика — I Кибернетика (от греч. kybernetike искусство управления, от kybernáo правлю рулём, управляю) наука об управлении, связи и переработке информации (См. Информация). Предмет кибернетики. Основным объектом исследования в К. являются … Большая советская энциклопедия

  • Кибернетика — (от др. греч. κυβερνητική «искусство управления») наука об общих закономерностях процессов управления и передачи информации в различных системах, будь то машины, живые организмы или общество. Содержание 1 Обзор … Википедия

Обзор

Термин «кибернетика» изначально ввёл в научный оборот Ампер, который в своём фундаментальном труде «Опыт о философии наук, или аналитическое изложение естественной классификации всех человеческих знаний», первая часть которого вышла в свет в 1834 году, вторая в 1843 году, определил кибернетику как науку об управлении государством, которая должна обеспечить гражданам разнообразные блага. В современном понимании — как наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе, термин впервые был предложен Норбертом Винером в 1948 году.

Кибернетика включает изучение обратной связи, чёрных ящиков и производных концептов, таких как управление и коммуникация в живых организмах, машинах и организациях, включая самоорганизации. Она фокусирует внимание на том, как что-либо (цифровое, механическое или биологическое) обрабатывает информацию, реагирует на неё и изменяется или может быть изменено, для того чтобы лучше выполнять первые две задачи. Стаффорд Бир назвал её наукой эффективной организации, а Гордон Паск расширил определение, включив потоки информации «из любых источников», начиная со звёзд и заканчивая мозгом.

Пример кибернетического мышления. С одной стороны, компания рассматривается в качестве системы в окружающей среде. С другой стороны, кибернетическое управление может быть представлено как система.

Согласно другому определению кибернетики, предложенному в 1956 году Л. Куффиньялем (англ.), одним из пионеров кибернетики, кибернетика — это «искусство обеспечения эффективности действия».

Ещё одно определение предложено Льюисом Кауфманом (англ.): «Кибернетика — это исследование систем и процессов, которые взаимодействуют сами с собой и воспроизводят себя».

По словарю Ожегова: «Кибернетика — наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе».

Кибернетические методы применяются при исследовании случая, когда действие системы в окружающей среде вызывает некоторое изменение в окружающей среде, а это изменение проявляется на системе через обратную связь, что вызывает изменения в способе поведения системы. В исследовании этих «петель обратной связи» и заключаются методы кибернетики.

Современная кибернетика зарождалась, включая в себя исследования в различных областях систем управления, теории электрических цепей, машиностроения, математического моделирования, математической логики, эволюционной биологии, неврологии, антропологии. Эти исследования появились в 1940 году, в основном, в трудах учёных на т. н. конференциях Мэйси (англ.).

Другие области исследований, повлиявшие на развитие кибернетики или оказавшиеся под её влиянием: теория управления, теория игр, теория систем (математический аналог кибернетики), психология (особенно нейропсихология, бихевиоризм, познавательная психология) и философия.

Сфера кибернетики

Объектом кибернетики являются все управляемые системы. Системы, не поддающиеся управлению, в принципе, не являются объектами изучения кибернетики. Кибернетика вводит такие понятия, как кибернетический подход, кибернетическая система. Кибернетические системы рассматриваются абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем — автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики — ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер, 1948) связано с созданием в 40-х годах XX века этих машин, а развитие кибернетики в теоретических и практических аспектах — с прогрессом электронной вычислительной техники.

Кроме средств анализа, в кибернетике используются мощные инструменты для синтеза решений, предоставляемые аппаратами математического анализа, линейной алгебры, геометрии выпуклых множеств, теории вероятностей и математической статистики, а также более прикладными областями математики, такими как математическое программирование, эконометрика, информатика и прочие производные дисциплины.

Особенно велика роль кибернетики в психологии труда и таких её отраслях, как инженерная психология и психология профессионально-технического образования. Кибернетика — наука об оптимальном управлении сложными динамическими системами, изучающая общие принципы управления и связи, лежащие в основе работы самых разнообразных по природе систем — от самонаводящих ракет-снарядов и быстродействующих вычислительных машин до сложного живого организма. Управление — это перевод управляемой системы из одного состояния в другое посредством целенаправленного воздействия управляющего. Оптимальное управление — это перевод системы в новое состояние с выполнением некоторого критерия оптимальности, например, минимизации затрат времени, труда, веществ или энергии. Сложная динамическая система — это любой реальный объект, элементы которого изучаются в такой высокой степени взаимосвязи и подвижности, что изменение одного элемента приводит к изменению других.

Направления

Кибернетика — более раннее, но всё ещё используемое общее обозначение для многих предметов. Эти предметы также простираются в области многих других наук, но объединены при исследовании управления системами.

Чистая кибернетика

Чистая кибернетика, или кибернетика второго порядка изучает системы управления как понятие, пытаясь обнаружить основные её принципы.

ASIMO использует датчики и интеллектуальные алгоритмы, чтобы избежать препятствий и перемещаться по лестнице

  • Искусственный интеллект
  • Кибернетика второго порядка
  • Компьютерное зрение
  • Системы управления
  • Эмерджентность
  • Обучающиеся организации
  • Новая кибернетика
  • Interactions of Actors Theory
  • Теория общения

В биологии

Кибернетика в биологии — это исследование кибернетических систем в биологических организмах, изучающее то, как животные приспосабливаются к окружающей их среде, и, как информация в форме генов может перейти от поколения к поколению. Также имеется второе направление — киборги.

Термический снимок пойкилотермного паука-птицееда на руке гомойотермного человека

  • Биоинженерия
  • Биологическая кибернетика
  • Биоинформатика
  • Бионика
  • Медицинская кибернетика
  • Нейрокибернетика
  • Гомеостаз
  • Синтетическая биология
  • Системная биология

Теория сложных систем

Теория сложных систем анализирует природу сложных систем и причины, лежащие в основе их необычных свойств.

Способ моделирования сложной адаптивной системы

  • Сложная адаптивная система
  • Сложные системы
  • Теория сложных систем

В вычислительной технике

В вычислительной технике методы кибернетики применяются для управления устройствами и анализа информации.

  • Робототехника
  • Система поддержки принятия решений
  • Клеточный автомат
  • Симуляция
  • Компьютерное зрение
  • Искусственный интеллект
  • Распознавание объектов
  • Система управления
  • АСУ

В инженерии

Кибернетика в инженерии используется, чтобы проанализировать отказы систем, в которых маленькие ошибки и недостатки могут привести к сбою всей системы.

Искусственное сердце, пример биомедицинской инженерии.

  • Адаптивная система
  • Эргономика
  • Биомедицинская инженерия
  • Нейрокомпьютинг
  • Техническая кибернетика
  • Системотехника

В экономике и управлении

  • Кибернетическое управление
  • Экономическая кибернетика
  • Исследование операций

В математике

  • Динамическая система
  • Теория информации
  • Теория систем

В психологии

  • Психологическая кибернетика

В социологии

  • Меметика
  • Социальная кибернетика

История

В Древней Греции термин «кибернетика», изначально обозначавший искусство кормчего, стал использоваться в переносном смысле для обозначения искусства государственного деятеля, управляющего городом. В этом смысле он, в частности, используется Платоном в «Законах».

Слово фр. «cybernétique» использовалось практически в современном значении в 1834 году французским физиком и систематизатором наук Андре Ампером (фр. André-Marie Ampère, 1775—1836), для обозначения науки управления в его системе классификации человеческого знания:

Андре Мари Ампер

«КИБЕРНЕТИКА. Отношения народа к народу, изучаемые <…> предшествующими науками, — лишь небольшая часть объектов, о которых должно печься правительство; его внимания также непрерывно требуют поддержание общественного порядка, исполнения законов, справедливое распределение налогов, отбор людей, которых оно должно назначать на должности, и всё, способствующее улучшению общественного состояния. Оно постоянно должно выбирать между различными мерами, наиболее пригодными для достижения цели; и лишь благодаря глубокому изучению и сравнению разных элементов, предоставляемых ему для этого выбора знанием всего, что имеет отношение к нации, оно способно управлять в соответствии со своим характером, обычаями, средствами существования процветания организацией и законами, которые могут служить общими правилами поведения и которыми оно руководствуется в каждом особом случае. Итак, только после всех наук, занимающихся этими различными объектами, надо поставить эту, о которой сейчас идёт речь и которую я называю кибернетикой, от слова др.-греч. κυβερνητιχη; это слово, принятое в начале в узком смысле для обозначения искусства кораблевождения, получило употребление у самих греков в несравненно более широком значении искусства управления вообще».

Джеймс Уатт

Первая искусственная автоматическая регулирующая система, водяные часы, была изобретена древнегреческим механиком Ктезибием. В его водяных часах вода вытекала из источника, такого как стабилизирующий бак, в бассейн, затем из бассейна — на механизмы часов. Устройство Ктезибия использовало конусовидный поток для контроля уровня воды в своём резервуаре и регулировки скорости потока воды соответственно, чтобы поддержать постоянный уровень воды в резервуаре, так, чтобы он не был ни переполнен, ни осушен. Это было первым искусственным действительно автоматическим саморегулирующимся устройством, которое не требовало никакого внешнего вмешательства между обратной связью и управляющими механизмами. Хотя они, естественно, не ссылались на это понятие как на науку кибернетику (они считали это областью инженерного дела), Ктезибий и другие мастера древности, такие как Герон Александрийский или китайский учёный Су Сун, считаются одними из первых, изучавших кибернетические принципы. Исследование механизмов в машинах с корректирующей обратной связью датируется ещё концом XVIII века, когда паровой двигатель Джеймса Уатта был оборудован управляющим устройством, центробежным регулятором обратной связи для того, чтобы управлять скоростью двигателя. А. Уоллес описал обратную связь как «необходимую для принципа эволюции» в его известной работе 1858 года. В 1868 году великий физик Дж. Максвелл опубликовал теоретическую статью по управляющим устройствам, одним из первых рассмотрел и усовершенствовал принципы саморегулирующихся устройств. Я. Икскюль применил механизм обратной связи в своей модели функционального цикла (нем. Funktionskreis) для объяснения поведения животных.

XX век

Современная кибернетика началась в 1940-х как междисциплинарная область исследования, объединяющая системы управления, теории электрических цепей, машиностроение, логическое моделирование, эволюционную биологию, неврологию. Системы электронного управления берут начало с работы инженера Bell Labs Гарольда Блэка в 1927 году по использованию отрицательной обратной связи, для управления усилителями. Идеи также имеют отношения к биологической работе Людвига фон Берталанфи в общей теории систем.

Ранние применения отрицательной обратной связи в электронных схемах включали управление артиллерийскими установками и радарными антеннами во время Второй мировой войны. Джей Форрестер, аспирант в Лаборатории Сервомеханизмов в Массачусетском технологическом институте, работавший во время Второй мировой войны с Гордоном С. Брауном над совершенствованием систем электронного управления для американского флота, позже применил эти идеи к общественным организациям, таким как корпорации и города как первоначальный организатор Школы индустриального управления Массачусетского технологического института в MIT Sloan School of Management (англ.). Также Форрестер известен как основатель системной динамики.

У. Деминг, гуру комплексного управления качеством, в чью честь Япония в 1950 году учредила свою главную индустриальную награду, в 1927 году был молодым специалистом в Bell Telephone Labs и, возможно, оказался тогда под влиянием работ в области сетевого анализа. Деминг сделал «понимающие системы» одним из четырёх столпов того, что он описал как глубокое знание в своей книге «Новая экономика».

Многочисленные работы появились в смежных областях. В 1935 году советский физиолог П. К. Анохин издал книгу, в которой было изучено понятие обратной связи («обратная афферентация»). Исследования продолжались, в особенности в области математического моделирования регулирующих процессов, и две ключевые статьи были опубликованы в 1943 году. Этими работами были «Поведение, цель и телеология» , Норберта Винера и Дж.Бигелоу (англ.) и работа «Логическое исчисление идей, относящихся к нервной активности» У. Мак-Каллока и У. Питтса.

Кибернетика как научная дисциплина была основана на работах Винера, Мак-Каллока и других, таких как У. Р. Эшби и У. Г. Уолтер.

Уолтер был одним из первых, кто построил автономные роботы в помощь исследованию поведения животных. Наряду с Великобританией и США, важным географическим местоположением ранней кибернетики была Франция.

Весной 1947 года Винер был приглашён на конгресс по гармоническому анализу, проведённому в Нанси, Франция. Мероприятие было организовано группой математиков Николя Бурбаки, где большую роль сыграл математик Ш. Мандельбройт.

Норберт Винер

Во время этого пребывания во Франции Винер получил предложение написать сочинение на тему объединения этой части прикладной математики, которая найдена в исследовании броуновского движения (т. н. винеровский процесс) и в теории телекоммуникаций. Следующим летом, уже в Соединённых Штатах, он использовал термин «кибернетика» как заглавие научной теории. Это название было призвано описать изучение «целенаправленных механизмов» и было популяризировано в книге «Кибернетика, или управление и связь в животном и машине» (Hermann & Cie, Париж, 1948). В Великобритании вокруг этого в 1949 году образовался Ratio Club (англ.).

В начале 1940-х Джон фон Нейман, более известный работами по математике и информатике, внёс уникальное и необычное дополнение в мир кибернетики: понятие клеточного автомата и «универсального конструктора» (самовоспроизводящегося клеточного автомата). Результатом этих обманчиво простых мысленных экспериментов стало точное понятие самовоспроизведения, которое кибернетика приняла как основное понятие. Понятие, что те же самые свойства генетического воспроизводства относились к социальному миру, живым клеткам и даже компьютерным вирусам, является дальнейшим доказательством универсальности кибернетических исследований.

Винер популяризировал социальные значения кибернетики, проведя аналогии между автоматическими системами (такими как регулируемый паровой двигатель) и человеческими институтами в его бестселлере «Кибернетика и общество» (The Human Use of Human Beings: Cybernetics and Society Houghton-Mifflin, 1950).

Одним из главных центров исследований в те времена была Биологическая компьютерная лаборатория в Иллинойском университете, которой в течение почти 20 лет, начиная с 1958 года, руководил Х. Фёрстер.

Кибернетика в СССР

Основная статья: Кибернетика в СССР

Развитие кибернетики в СССР было начато в 1940-х годах.

В «Философский словарь» 1954 года издания попала характеристика кибернетики как «реакционной лженауки». Реабилитацией кибернетики в СССР можно считать 1955 год, когда в журнале «Вопросы философии» (№ 4) вышла статья С. Л. Соболева, А. И. Китова и А. А. Ляпунова «Основные черты кибернетики».

В СССР одним из главных борцов за реабилитацию «буржуазной лженауки» кибернетики был А. И. Китов, который был автором первых положительных публикаций о ней и убеждённым пропагандистом её идей. Его научные труды и статьи, написанные им самостоятельно и совместно с А. И. Бергом, А. А. Ляпуновым и С. Л. Соболевым, относящиеся к периоду 1952—1961 гг., сыграли огромную роль в признании кибернетики как науки и развитии информатики в Советском Союзе и в нескольких других странах. В 1951-52 годах А. И. Китов, ознакомившись в библиотеке секретного конструкторского бюро по разработке ЭВМ СКБ-245 с оригиналом книги американского учёного Норберта Винера «Кибернетика», сразу же оценил большую пользу для общества, которую эта новая наука может принести. Не только оценил, но и написал развёрнутую положительную статью «Основные черты кибернетики», что потребовало от него проявления в то сталинское время истинного гражданского мужества. Затем прошло около полутора лет многочисленных публичных выступлений о кибернетике А. И. Китова и А. А. Ляпунова, прежде чем Идеологический отдел ЦК КПСС санкционировал публикацию этой статьи. В середине 1955 года эта статья с подписями академика С. Л. Соболева, А. И. Китова и А. А. Ляпунова была опубликована в главном идеологическом коммунистическом журнале «Вопросы философии». Эта статья вошла в историю российской науки как победный момент в борьбе за кибернетику.

В 60-е и 70-е на кибернетику, как на техническую, так и на экономическую, уже стали делать большую ставку.

Упадок и возрождение

В течение последних 30 лет кибернетика прошла через взлёты и падения, становилась всё более значимой в области изучения искусственного интеллекта и биологических машинных интерфейсов (то есть киборгов), но, лишившись поддержки, потеряла ориентиры дальнейшего развития.

Франсиско ВарелаСтюарт А. Амплеби

В 1970-х новая кибернетика проявилась в различных областях, но особенно — в биологии. Некоторые биологи под влиянием кибернетических идей (Матурана и Варела, 1980; Варела, 1979; Атлан (англ.), 1979), «осознали, что кибернетические метафоры программы, на которых базировалась молекулярная биология, представляли собой концепцию автономии, невозможную для живого существа. Следовательно, этим мыслителям пришлось изобрести новую кибернетику, более подходящую для организаций, которые человечество обнаруживает в природе — организаций, не изобретённых им самим». Возможность того, что эта новая кибернетика применима к социальным формам организаций, остаётся предметом теоретических споров с 1980-х годов.

В экономике в рамках проекта Киберсин попытались ввести кибернетическую плановую экономику в Чили в начале 1970-х. Эксперимент был остановлен в результате путча 1973 года, оборудование было уничтожено.

В 1980-х новая кибернетика, в отличие от её предшественницы, интересуется «взаимодействием автономных политических фигур и подгрупп, а также практического и рефлексивного сознания предметов, создающих и воспроизводящих структуру политического сообщества. Основное мнение — рассмотрение рекурсивности, или самозависимости политических выступлений, как в отношении выражения политического сознания, так и путями, в которых системы создаются на основе самих себя».

Голландские учёные-социологи Гейер и Ван дер Зоувен в 1978 году выделили ряд особенностей появляющейся новой кибернетики. «Одной из особенностей новой кибернетики является то, что она рассматривает информацию как построенную и восстановленную человеком, взаимодействующим с окружающей средой. Это обеспечивает эпистемологическое основание науки, если смотреть на это с точки зрения наблюдателя. Другая особенность новой кибернетики — её вклад в преодоление проблемы редукции (противоречий между макро- и микроанализом). Таким образом, это связывает индивидуума с обществом». Гейер и Ван дер Зоувен также отметили, что «переход от классической кибернетики к новой кибернетике приводит к переходу от классических проблем к новым проблемам. Эти изменения в размышлении включают, среди других, изменения от акцента на управляемой системе к управляющей и фактору, который направляет управляющие решения. И новый акцент на коммуникации между несколькими системами, которые пытаются управлять друг другом» .

Последние усилия в изучении кибернетики, систем управления и поведения в условиях изменений, а также в таких смежных областях, как теория игр (анализ группового взаимодействия), системы обратной связи в эволюции и исследование метаматериалов (материалов со свойствами атомов, их составляющих, за пределами ньютоновых свойств), привели к возрождению интереса к этой всё более актуальной области.

Примечания

  1. ↑ Словарь по кибернетике / Под редакцией академика В. С. Михалевича. — 2-е. — Киев: Главная редакция Украинской Советской Энциклопедии имени М. П. Бажана, 1989. — С. 259. — 751 с. — (С48). — 50 000 экз. — ISBN 5-88500-008-5.
  2. ↑ «Энциклопедия кибернетики» под ред. В. М. Глушкова, т.1., Киев, 1974 — с. 440.
  3. ↑ Norbert Wiener. Cybernetics or Control and Communication in the Animal and the Machine. (Hermann & Cie Editeurs, Paris, The Technology Press, Cambridge, Mass., John Wiley & Sons Inc., New York, 1948)
  4. ↑ Kelly, Kevin. Out of control: the new biology of machines, social systems and the economic world. — Boston : Addison-Wesley, 1994. — ISBN 0-201-48340-8.
  5. ↑ Couffignal, Louis. «Essai d’une définition générale de la cybernétique», The First International Congress on Cybernetics, Namur, Belgium, June 26-29, 1956, Gauthier-Villars, Paris, 1958, pp. 46—54
  6. ↑ Толковый словарь Ожегова — значение слова КИБЕРНЕТИКА. slovariki.org. Проверено 25 мая 2016.
  7. ↑ Цитируется по сборнику «Кибернетика ожидаемая. Кибернетика неожиданная». — М.: Наука, 1968. — стр. 152.
  8. ↑ Jean-Pierre Dupuy. «The autonomy of social reality: on the contribution of systems theory to the theory of society» in: Elias L. Khalil & Kenneth E. Boulding eds., Evolution, Order and Complexity, 1986.
  9. ↑ Peter Harries-Jones. «The Self-Organizing Polity: An Epistemological Analysis of Political Life by Laurent Dobuzinskis» in: Canadian Journal of Political Science (Revue canadienne de science politique), Vol. 21, No. 2 (Jun., 1988), pp. 431—433.
  10. ↑ Kenneth D. Bailey. Sociology and the New Systems Theory: Toward a Theoretical Synthesis, 1994, p.163.
  11. ↑ Kenneth D. Bailey. Sociology and the New Systems Theory: Toward a Theoretical Synthesis, 1994.
  12. ↑ Kevin Kelly. «Out of control: The new biology of machines, social systems and the economic world», 1994, Addison-Wesley ISBN 0-201-48340-8

Литература

  • Винер Н. Кибернетика. — М.: Советское радио, 1968.
  • Винер Н. Некоторые моральные и технические последствия автоматизации.
  • С. Л. Соболев, А. И. Китов, А. А. Ляпунов. «Основные черты кибернетики» // «Вопросы философии». — 1955. — № 4. — С. 147.
  • Китов А. И. Техническая кибернетика // Радио (№ 11), 1955.
  • Китов А. И., Ляпунов А. А., Полетаев И. А., Яблонский С. В. О кибернетике // Труды 3-го Всесоюзного математического съезда. Том 2. М., 1956.
  • Китов А. И. Кибернетика и управление народным хозяйством // Кибернетику — на службу коммунизму. Сборник статей под редакцией А. И. Берга. Том 1. М.-Л.: Госэнергоиздат, 1961.
  • Берг А. И., Китов А. И., Ляпунов А. А. Кибернетика в военном деле // Военная мысль, 1961.
  • Д. А. Поспелов. Становление информатики в России //Очерки истории информатики в России. Новосибирск. 1998.
  • Китов А. И. Кибернетика в управлении хозяйством // М. Экономическая газета. Август 1961, № 4.
  • Китов А. И., Ляпунов А. А. Кибернетика в технике и экономике // Вопросы философии (№ 9), 1961.
  • Шеннон К. Работы по теории информации и кибернетике. — М.: Изд. иностр. лит., 1963. — 830 с.
  • Эшби У. Р. Введение в кибернетику. — М.: Изд. иностр. лит., 1959. — 432 с.
  • Пекелис В. Д. (сост.) Возможное и невозможное в кибернетике, Наука, 1964, 222 с.
  • Пекелис В. Д. (сост.) Кибернетика ожидаемая и кибернетика неожиданная, Наука, 1968, 311 с.
  • Пекелис В. Д. (сост.) Кибернетика. Итоги развития, Наука, 1979, 200 с.
  • Пекелис В. Д. (сост.) Кибернетика. Современное состояние, Наука, 1980, 208 с.
  • Марков А. А. Что такое кибернетика. — В кн.: Кибернетика, мышление, жизнь. — М.: Мысль, 1964.
  • Петрушенко Л. А. Самодвижение материи в свете кибернетики. — М.: Наука, 1971.
  • Кузин Л. Т. Основы кибернетики (в 2-х томах). — М.: Энергия, 1973.
  • В. М. Глушков, Н. М. Амосов и др. «Энциклопедия кибернетики». Киев. 1975 г.
  • Герович В. А. Человеко-машинные метафоры в советской физиологии // Вопросы истории естествознания и техники. № 3, 2002. С. 472—506.
  • Гринченко С. Н. История человечества с кибернетических позиций // История и Математика: Проблемы периодизации исторических макропроцессов. — М.: КомКнига, 2006. — С. 38—52.
  • Бирюков Б. В., Спиркин А. Г. Кибернетика и логика. — М.: Наука, 1978. — 333 с.
  • Грэхэм, Л. Естествознание, философия и науки о человеческом поведении в Советском Союзе. — М.: Политиздат, 1991. — 480 с.
  • Клаус Г. Кибернетика и философия = Kybernetik in philosophischer Sicht / Перевод с немецкого И. С. Добронравова, А. П. Куприяна, Л. А. Лейтес; редактор В. Г. Виноградов; Послесловие Л. Б. Баженова, Б. В. Бирюкова, А. Г. Спиркина. — М.: ИЛ, 1963.
  • Основы кибернетики. Математические основы кибернетики / Под ред. профессора К. А. Пупкова. — М.: Высшая школа.
  • Основы кибернетики. Теория кибернетических систем / Под ред. профессора К. А. Пупкова. — М.: Высш. школа, 1976. — 408 с. — (Учеб. пособие для вузов). — 25 000 экз.
  • Поваров Г. Н. Ампер и кибернетика. — М.: Советское радио, 1977.
  • Теслер Г. С. Новая кибернетика. — Киев: Логос, 2004. — 401 с.
  • Кибернетика и информатика // Сборник научных трудов к 50-летию Секции кибернетики Дома учёных им. М. Горького РАН. — Санкт-Петербург, 2006. — 410 с.
  • Игнатьев М. Б. Информационные технологии в микро-, нано- и оптоэлектронике. — изд. ГУАП, Санкт-Петербург, 2008. — 200 с.

Робототехника как раздел кибернетики

Предмет робототехники — это создание и применение роботов, других средств робототехники и основанных на них технических систем и комплексов различного назначения. Возникнув на основе кибернетики и механики, робототехника в свою очередь породила новые направления развития и самих этих наук. В кибернетике это связано, прежде всего, с интеллектуальным управлением и бионикой как источником новых, заимствованных у живой природы идей, а в механике — с многостепенными механизмами типа манипуляторов. Основы робототехники. — 2-е изд., перераб. и доп. — СПб.: БХВ-Петербург, 2005. — 416 с.: ил.

Робот можно определить как универсальный автомат для осуществления механических действий, подобных тем, которые производит человек, выполняющий физическую работу. При создании первых роботов и вплоть до наших дней образцом для них служат возможности человека. Именно стремление заменить человека на тяжелых и опасных работах породило идею робота, затем первые попытки ее реализации (в средние века) и, наконец, обусловило возникновение и развитие современной робототехники и роботостроения.

На рис. В.1 показана функциональная схема робота. В общем виде она включает исполнительные системы— манипуляционную (один или несколько манипуляторов) и передвижения (транспортную), информационно-управляющую, сенсорную, дающую информацию о внешней среде и систему связи с оператором, а также с другими взаимодействующими с роботом машинами. Исполнительные системы в свою очередь состоят из механической системы и системы приводов. Механическая система манипулятора — это обычно кинематическая цепь, состоящая из подвижных звеньев с угловым или поступательным перемещением, которая заканчивается каким-нибудь рабочим инструментом или захватным устройством.

Со временем понятие робот расширилось и под ним часто стали понимать любую автоматическую машину, заменяющую человека и чем-то напоминающую его разумное поведение.

Исполнительные системы

Рис. В.1. Функциональная схема робота

В этой работе термин «робот» будет использоваться в приведенном ранее стандартизованном смысле.

Из данного определения робота следует, что — это машина автоматического действия, которая объединяет свойства машин рабочих и информационных, являясь, таким образом, принципиально новым видом машин. В достаточно развитом виде роботы аналогично человеку осуществляют активное силовое и информационное взаимодействие с окружающей средой и благодаря этому могут не только обладать искусственным интеллектом, но и совершенствовать его. Правда, пока роботы еще очень далеки по своим интеллектуальным возможностям от человека. При этом от ранее известных видов машин роботы также принципиально отличаются своей универсальностью (многофункциональностью) и гибкостью (быстрым переходом к выполнению новых операций).

В основе универсальности роботов лежит универсальность его рабочих органов, хотя сегодня до универсальности руки человека им еще далеко (правда, это компенсируется возможностью быстрой смены рабочих органов робота в процессе выполнения операций).

Универсальность роботов предполагает возможность выполнения ими различных целенаправленных действий, которые требуют определенных интеллектуальных способностей. Это открывает широкие возможности использования роботов в качестве как основного технологического оборудования (на сборке, сварке, окраске и т. п.), так и вспомогательного — для замены рабочих, запятых обслуживанием такого оборудования.

Универсальность роботов позволяет автоматизировать принципиально любые операции, выполняемые человеком, а быстрота перестройки на выполнение новых операций при освоении новой продукции или иных изменениях в производстве сохраняет у автоматизируемого с помощью роботов производства ту же гибкость, какую сегодня имеют только производства, обслуживаемые человеком. Роботы потому и появились лишь во второй половине XX столетия, что именно сейчас назрела необходимость в таких универсальных и гибких средствах, без которых невозможно осуществить комплексную автоматизацию современного производства с его большой номенклатурой и частой сменяемостью выпускаемой продукции, включая создание гибких автоматизированных производств.

FILED UNDER : Справочник

Submit a Comment

Must be required * marked fields.

:*
:*