admin / 22.07.2018

Светодиоды для лазера

Собираем карманный лазер

В этом посте я опишу, как собирал фиолетовую лазерную указку из хлама, нашедшегося под рукой. Для этого мне потребовался: фиолетовый лазерный диод, коллиматор для сведения пучка света, детали драйвера, корпус для лазера, источник питания, хороший паяльник, прямые руки, и желание творить.

Заинтересовавшихся и желающих поковыряться в электронике — прошу под кат.
Попался мне под руку убитый Blu-ray резак. Выбросить было жалко, а что из него можно сделать — я не знал. Спустя полгода наткнулся на видеоролик, в котором была показана такая самодельная «игрушка». Тут и блюрей пригодился!
В системе чтения-записи привода используется лазерный диод. Выглядит он в большинстве случаев так:

Или вот так.

Для питания «красного» диода необходимы 3-3.05 вольт, и от 10-15 до 1500-2500 миллиампер в зависимости от его мощности.
А вот диод «фиолетовый» требует аж 4.5-4.9 вольт, поэтому питать через резистор от литиевого аккумулятора не получится. Придется сделать драйвер.
Так как у меня был положительный опыт с микросхемой ZXSC400, то я без раздумий ее и выбрал. Эта микросхема представляет собой драйвер для мощных светодиодов. Даташит. С обвязкой в виде транзистора, диода и индуктивности я мудрить не стал — все из даташита.
Печатную плату для драйвера лазера я изготовил известным многим радиолюбителям ЛУТ-ом (Лазерно-утюжная технология). Для этого необходим лазерный принтер. Схема нарисована в программе SprintLayout5 и напечатана на пленке для дальнейшего перевода рисунка на текстолит. Пленку можно использовать практически любую, лишь бы не застряла в принтере и на ней качественно напечаталось. Вполне подходит пленка от пластиковых папок-конвертов.
Если же нет пленки, не нужно расстраиваться! Одалживаем у подруги или жены женский глянцевый журнал, вырезаем оттуда самую неинтересную страницу и подгоняем ее под размер А4. Затем печатаем.
На фото ниже можно увидеть пленку с нанесенным тонером в форме разводки схемы, и подготовленный к переносу тонера кусочек текстолита. Следующим шагом будет подготовка текстолита. Лучше всего брать кусочек, раза в два больше нашей схемы, чтобы было удобнее прижать к поверхности во время следующего шага. Медную поверхность необходимо зашкурить и обезжирить.
Теперь нужно перенести «рисунок». Находим в шкафу утюг, включаем его. Пока он разогревается, кладем кусочек бумаги со схемой на текстолит.
Как только утюг нагреется, нужно аккуратно прогладить пленку через бумагу.

В этом видео весьма наглядно показан процесс.

Когда она «прилипнет» к текстолиту, можно выключать утюг и переходить к следующему шагу.
После переноса тонера с помощью обычного утюга это дело выглядит так:
Если некоторые дорожки не перенеслись, либо перенеслись не очень хорошо, их можно поправить CD-маркером и острой иголкой. Желательно использовать увеличительное стекло, дорожки довольно мелкие, всего 0.4 мм. Плата готова к травлению.

Травить будем хлорным железом. 150 рублей за баночку, хватает надолго.

Разводим раствор, кидаем туда нашу заготовку, «помешиваем» плату и ждем результата.


Не забываем контролировать процесс. Аккуратно вытаскиваем плату пинцетом (его тоже лучше купить, этим мы избавим себя от лишнего мата и «соплей» припоя на будущей плате при пайке).
Ну вот, плата вытравилась!

Аккуратно зачищаем мелкой шкуркой, наносим флюс, залуживаем. Вот, что получается после облуживания.

На контактные площадки припоя можно нанести чуть больше чем везде, чтобы паять детали удобнее было, и без наноса припоя дополнительно.
Осталось отрезать чуть дальше обведенных контуров, и обточить лишнее надфилем. Я делал драйвер в двух экземплярах — на всякий случай. Текстолит удобно резать ножницами по металлу.

Собирать драйвер будем по этой схеме. Обратите внимание: R1 — 18 миллиОм, а не мегаОм!

При пайке лучше всего использовать паяльник с тонким жалом, для удобства можно воспользоваться увеличительным стеклом, ведь детали достаточно мелкие. При этой пайке используется флюс ЛТИ-120.
Итак, плата практически спаяна.




Проволочка впаивается на место резистора на 0.028 Ом, так как такой резистор мы вряд ли найдем. Можно впаять параллельно 3-4 SMD-перемычки (выглядят как резисторы, но с надписью 0), на них около 0.1 ом реального сопротивления.
Но таких не оказалось, поэтому я использовал обычную медную проволоку аналогичного сопротивления. Точно не измерял — лишь подсчеты какого-то онлайн-калькулятора.
Тестируем.

Напряжение выставлено всего 4.5 вольт, поэтому светит не очень ярко.
Разумеется, выглядит плата грязновато до смывки флюса. Смывать можно простым спиртом.
Теперь стоит написать и об коллиматоре. Дело в том, что лазерный диод сам по себе светит не тонким лучом. Если включить его без оптики, то светить он будет как обычный светодиод с расходимостью в 50-70 градусов. Для того, что бы создать луч, нужна оптика и сам коллиматор.
Коллиматор заказан из китая. Он содержит в себе еще и слабый красный диод, но он мне не был нужен. Старый диод можно выбить обычным болтом М6.
Раскручиваем коллиматор, выкручиваем линзу и заднюю часть, отпаиваем драйвер от диода. Оставшееся крепление зажимаем в тиски. Выбить диод можно, ударив по нему.
Диод выбит.


Теперь нужно запрессовать новый фиолетовый диод.
Но на ноги диоду нажимать нельзя, а по-другому запрессовывать неудобно.
Что же делать?
Задняя часть коллиматора прекрасно подходит для этого.
Вставляем новый диод ножками в отверстие в задней части цилиндра, и зажимаем в тиски.
Плавно закручиваем тиски, пока диод полностью не запрессуется в коллиматор.


Итак, драйвер и коллиматор собраны.
Теперь закрепляем коллиматор в «голову» нашего лазера, и припаяем диод к выходам драйвера с помощью проводков, либо прямо к плате драйвера.
В качестве корпуса я решил использовать простой фонарик из хозяйственного магазина за сто рублей.
Выглядит он так:

Все железки для лазера и коллиматор.

На прищепку для удобства крепления нацеплен магнитик.
Осталось лишь вставить устройство лазера в корпус и закрутить.

Sprint layout 5, файлы разводки печатной платы в архиве.
P.S. Этот карманный лазер является достаточно опасной «игрушкой». Лазеры класса I-II для человека и глаз не особо опасны, разве что диод случайно в глаз попадет при неудачной сборке. А вот классы III-IV способны повредить или лишить зрения вовсе. Необходимо использовать очки. Направлять луч в сторону людей, а тем более в лицо — нельзя.

Китайская красная указка светит с мощностью 0.5-1 мВт. Этот лазер имеет мощность 150-200 милливатт. Представьте, что на Вас направили одновременно 150-200 указок!

:: СХЕМА САМОДЕЛЬНОГО ЛАЗЕРА ::

Все радиолюбители в каком то этапе своей практики делали или хотели сделать настоящий режущий лазер. Сама идея кажется сложной, особенно если нет навыков о создании таких девайсов, но все гораздо проще! Сердцем режущего лазера служит лазерный диод, остальное (батарейки, стабилизатор тока и т.д.) всего лишь дополнительные элементы для стабилизации напряжения и питания девайса. Для начала нужно найти CD или DVD привод.

Тут хочу заметить, что обычный лазерный диод из двд проигрывателей не подойдет! нужен пишущий лазер от старого дисковода ПК. Далее нужно разобрать дисковод и снять оптическую часть. Лазерный диод сразу бросается на глаза, его нужно аккуратно извлечь.

Все остальное бросаем в мусор, нам из привода нужен только лазерный диод. Обычно у лазерных диодов 3 вывода. Вывод посередине в основном минус (корпус), плюс — правый или левый вывод, в зависимости от марки и производителя лазерного диода. Его нужно проверить.

Берем две пальчиковые батарейки и через резистор в 5 ом подключаем к диоду. Минус напрямую подключаем к среднему выводу диода, плюс сначала левому , потом правому выводу (можно и наоборот) и смотрим, пока лазер слегка не засветится красным светом.

ВНИМАНИЕ! НИКОГДА НЕ СМОТРИТЕ НА ДИОД, ПРОВЕРКУ ДЕЛАЙТЕ НАПРАВЛЕНИЕМ ОПТИЧЕСКОЙ ЧАСТИ ДИОДА НА ПРЕДМЕТЫ, ЧТОБЫ ПРОВЕРЯТЬ СВЕЧЕНИЕ!

Когда цоколевка понятна, нужно собрать схему нашего самодельного лазерного излучателя. Питать лазер можно от 2 — 3-х пальчиковых батареек, или от аккумулятора мобильного телефона. При питании от аккумулятора мобильника, нужно плюс подавать через ограничительный резистор в 25 ом, при питании от двух пальчиковых батареек питание подаем через резистор в 5 ом, но стоит заметить, что от двух пальчиковых батареек мощность будет чуть ниже, чем от аккумулятора мобильного телефона. Как видите все очень просто — лазер, аккумулятор и резистор.

Вместо резистора, в схеме можно использовать стабилизатор напряжения (ЛМ317), но работает почти одинакового. Мощность резистора не менее 2 ватта. Оптика использована от обыкновенного красного лазера, который можно купить в магазине. Такой лазер имеет достаточно дальний радиус действия — до 30 см, затем уже луч менее опасен. И еще раз предупреждение — берегите от детей и и не направляйте на глаза людей! Это опасно и может повредить зрение.

Поделитесь полезными схемами
СХЕМА ЧАСТОТОМЕРА

Частоту звукового сигнала можно определить с помощью электронного частотомера. Работа частотомера. Звуковой сигнал, преобразованный в электрический, подаётся на вход усилителя на транзисторе VT1. Транзистор почти полностью открыт, он ограничивает только полупериоды отрицательной, и усиливают только полупериоды положительной полярности.

СХЕМА УСТРОЙСТВА ДЛЯ ЗАПИСИ ГОЛОСА

Этот проект — принципиальная схема самодельного звукозаписывающего прибора на ISD25120, способного записать фрагмент аудио 120 секунд.

КАК СДЕЛАТЬ ГЛУШИЛКУ

Как сделать самому постановщик помех, для нейтрализации громкого шума от нехороших соседей? Предлагаемая глушилка предназначена для локального подавления сигналов ТВ и FM радио. Хочу сразу напомнить, что за постановку искусственных помех штраф на 20-70 минималок, с конфискацией технических средств ст. 139-3 КОАП РФ.

СХЕМА УСТРОЙСТВА ДЛЯ ОПРЕДЕЛЕНИЯ ЦВЕТА
Устройство, которое распознает цвета, приводится на рисунке. Может быть полезен в схемах диагностики, автоматики и управления процессами. Прибор содержит три датчика освещенности, выполненные на фоторезисторах.

СХЕМА БЕСПРОВОДНОГО ЗАРЯДНОГО УСТРОЙСТВА

Недавно был разработан способ для зарядки мобильного телефона без проводов! Представьте себе: вы держите сотовый телефон в руках и беседуйте с другом, и в этот момент ваш телефон заряжается, а что самое главное — от него не торчат провода зарядного устройства. Предлагаю два способа реализации этой идеи, вернее способ один — метод индукции тока без проводов, а вариантов конструкции такого беспроводного зарядного устройства целых два.

Сегодня во многих приборах бытового и любого другого плана используются лазерные диоды (полупроводники) для создания целенаправленного луча. И самым важным моментом в самостоятельной сборке лазерной установки является подключение диода.

Лазерный диод

Из этой статьи вы узнаете обо всем, что нужно для качественного подключения лазерного диода.

Особенности полупроводника и его подсоединения

От led диода лазерная модель отличается очень маленькой площадью кристалла. В связи с чем наблюдается значительная концентрация мощности, что приводит к кратковременному превышению значения тока в переходе. Из-за этого такой диод может легко перегореть. Поэтому, чтобы лазерный диод прослужил как можно дольше, необходима специальная схема – драйвер.

Обратите внимание! Любой диод лазерного типа необходимо питать стабилизированным током. Хоте некоторые разновидности, дающие красный свет, ведут себя достаточно стабильно, даже если имеют не стабильное питание.

Красный лазерный диод

Но, даже если используют драйвер, диод нельзя подключать к нему. Здесь необходим еще «датчик тока». В его роли часто выступает общий провод низкоомного резистора, который включается в разрыв между этими деталями. В результате схема имеет один существенный недостаток — минус питания оказывается «оторван» от минуса, имеющегося в питании схемы. Кроме этого данная схема имеет еще один минус — на токоизмерительном резисторе происходит потеря мощности.
Собираясь подключить лазерный диод, необходимо понимать, к какому драйверу его следует подключать.

Классификация драйверов

На данный момент существует два основных типа драйверов, которые можно подключить к нашему полупроводнику:

  • импульсный драйвер. Представляет собой частный случай преобразователя напряжения импульсного характера. Он может быть как понижающим, так и повышающим. У них входная мощность приблизительно равна выходной. При этом имеется незначительное преобразование энергии в тепло. Упрощенная схема импульсного драйвера имеет следующий вид;

Упрощенная схема импульсного драйвера

  • линейный драйвер. На такой драйвер схема обычно подает больше напряжения, чем требует полупроводник. Для его гашения необходим транзистор, который лишнюю энергию будет выделять с теплом. Такой драйвер имеет небольшой КПД, в связи с чем его используют крайне редко.

Обратите внимание! При использовании линейных микросхем-стабилизаторов интегрального плана при падении входного напряжения на диоде ток будет уменьшаться.

Схема линейного драйвера

В связи с тем, что питание любого лазерного диода может осуществляться через два разных типа драйверов, то схема подключения будет различаться.

Особенности соединения

Схема, которая будет использоваться для питания лазерного диода, может содержать в себе не только драйвер и «датчик тока», но и источник питания – аккумулятор или батарею.

Вариант схемы подключения

Обычно аккумулятор/батарея в таком случае должны иметь напряжение в 9 В. Кроме них в схему обязательно должны входить лазерный модуль и токоограничивающий резистор.

Обратите внимание! Чтобы не тратиться на диод, его можно извлечь из DVD привода. При этом это должен быть именно компьютерное устройство, а не стандартный проигрыватель.

Компьютерный DVD-привод

Лазерный полупроводник имеет три вывода (ноги), два из которых размещены по бокам, а один – посредине. Средний выход следует подключать к минусовой клемме выбранного источника питания. Положительную клемму нужно подсоединять к левой или правой «ноге». Выбор левой или правой стороны зависит от производителя полупроводника. Поэтому нужно определить, какой именно вывод будет: «+» и «-«. Для этого на полупроводник следует подать питание. Здесь отлично справятся две батарейки, каждая по 1,5 вольт, а также резистор в 5 Ом.
Минусовый вывод у источника питания следует подключить к центральному минусовому выводу, определенного у диода. При этом плюсовая сторона должна подсоединяться к каждой из двух оставшихся клемм полупроводника поочередно. Таким образом его можно подключать и к микроконтроллеру.
Питание для лазерного диода можно осуществить с помощью 2-3 пальчиковых батареек. Но при желании в схему можно включить и аккумулятор от мобильного телефона. В таком случае необходимо помнить, что понадобиться еще дополнительный ограничительный резистор на 20 Ом.

Пошаговая инструкция подсоединения

Самым удобным в плане создания лазерной установки своими руками будет красный полупроводник, имеющий выходную мощность примерно в 200 милливатт.

Обратите внимание! Именно таким полупроводником оснащен любой компьютерный DVD-проигрыватель. Это значительно упрощает поиск источника света.

Подключение выглядит следующим образом:

  • для подключения необходимо использовать один полупроводник. Их обязательно нужно проверить на работоспособность (достаточно просто подключить к батарейке);
  • выбираем более яркую модель. При проверке инфракрасного светодиода (при взятии его из компьютерного проигрывателя), он будет светить слабым красным свечением. Помните, что его

ЗАПРЕЩАЕТСЯ направлять в глаза, иначе можно полностью лишиться зрения;

Проверка диода

  • далее лазер устанавливаем на самодельный радиатор. Чтобы это сделать, нужно просверлить в алюминиевой пластине (толщина примерно 4 мм) отверстие с таким диаметром, чтобы диод входил в него достаточно туго;
  • между лазером и радиатором необходимо нанести небольшой слой термопласты;
  • далее берем проволочный керамический резистор, имеющий сопротивление 20 Ом с мощностью в 5 Вт и соблюдая полярность подключаем его к схеме. Через него нужно подключить лазер и источник питания (мобильный аккумулятор или батарейку);
  • сам лазер следует зашунтовать с помощью керамического конденсатора, имеющего любую емкость;
  • далее отворачивая устройство от себя, следует подключить его к сети питания. В результате должен включить красный луч.

Красный луч от самодельного устройства

После этого его можно сфокусировать при помощи двояковыпуклой линзы. Сфокусируйте его на несколько секунд в одной точке на бумаге, которая поглощает красный спектр. Лазер на ней оставит красный свет.
Как видите, получилось работающее устройство, которое подключено к сети в 220 В. Используя различные схемы и варианты подключения, можно создать разные приспособления, вплоть до карманной лазерной указки.

Подключая лазерный диод, необходимо помнить о безопасном обращении с ним, а также знать нюансы, которые присутствуют в его работе. После этого останется только подобрать понравившуюся схему и подключить полупроводник. Главное помните, что все контакты должны быть хорошо запаяны, иначе деталь может перегореть в процессе работы.

Лазерные диоды, их разновидности

Два главных конструктивных отличия у лазерного диода по сравнению со светодиодом. Первое, лазерный диод имеет встроенный оптический резонатор. Второе, лазерный диод работает при значительно больших значениях токов накачки, чем светодиод, что позволяет при превышении некоторого порогового значения токов накачки получить режим индуцированного излучения. Именно такое излучение характеризуется высокой когерентностью (согласованность колебаний по фазе), благодаря чему лазерные диоды имеют значительно меньшую ширину спектра излучения (1-2 нМ) против 30-50 нМ у светодиодов.

Зависимость мощности излучения от тока накачки описывается ватт-амперной характеристикой лазерного диода (рис.14). При малых токах накачки лазер испытывает слабое спонтанное (самопроизвольное) излучение, работая как малоэффективный светодиод.

При превышении некоторого значения тока накачки Ithres, излучение становится индуцированным, что приводит к резкому росту мощности излучения и его когерентности. Мощность выходного излучения POUT или выходная мощность излучения светодиода (output power) отражает мощность вводимого в волокно излучения. Наряду с традиционной единицей измерения Вт она может измеряться в дБм. Мощности POUT , измеренной в мВт (10-3Вт) будет соответствовать мощность

POUT = 10 lg POUT (дБм).

Использование единицы измерения дБм упрощает энергетический расчет бюджета линии. Мощность излучения, приводящаяся в характеристиках оптического передатчика, может варьироваться в некотором диапазоне.

В таких случаях указывают диапазон мощности излучения. Например: -19дБм −14 дБм означает, что POUT MIN = -19 дБм, а POUT МАХ = 14 дБм.

Рис.14. Ватт-амперные характеристики: 1- лазерного диода; 2 – светодиода.

В магистральных ВОЛС используются два окна прозрачности 1,3 и 1,55 мкМ. Поскольку наименьшее затухание в волокне достигается в окне 1,55 мкМ, на сверхпротяженных бестрансляционных участках (L100 км) эффективней использовать оптические передатчики именно с этой длиной волны. В то же время на многих магистральных ВОЛС в состав ВОК входят только ступенчатые одномодовые волокна, имеющие минимум хроматической дисперсии в окрестности 1,3 мкМ (волокон со смещенной дисперсией нет). На длине волны 1,55 мкМ удельная хроматическая дисперсия у SMF (одномодовое волокно) составляет 17 пс/нМкм. А поскольку полоса пропускания обратно пропорциональна ширине спектра излучения, то увеличить полосу пропускания можно только, уменьшая ширину спектра излучения лазера. При ширине спектра = 4 нМ полоса пропускания на 100 км составляет 63 МГц, а при =2 нМ соответственно 1260 МГц.

Итак, для того, чтобы оптические передатчики на длине волны 1,55 мкМ могли в равной степени использоваться на протяжённой линии не только с одномодовым волокном со смещённой дисперсией (DSF), но и со ступенчатым одномодовым волокном (SMF), необходимо делать ширину спектра излучения передатчиков как можно меньше.

Четыре основных типа лазерных диодов получили наибольшее распространение: с резонатором Фабри-Перо; с распределённой обратной связью; с распределённым брэгговским отражением; с внешним резонатором.

Лазерные диоды с резонатором Фабри-Перо (FP-лазеры).

Резонатор в таком лазерном диоде образуется торцовыми поверхностями, окружающими с обеих сторон гетерогенный переход. Одна из поверхностей отражает свет с коэффициентом отражения, близким к 100%, другая является полупрозрачной, обеспечивая, таким образом, выход излучения наружу.

Спектр излучения лазерного диода с использованием резонатора Фабри-Перо соответствует многомодовому лазеру, т.е. он имеет значительные побочные максимумы. Причина их возникновения связана с условиями образования стоячих волн. Для усиления света определенной длины волны необходимо выполнение двух условий. Первое, – длина волны должна удовлетворять соотношению 2D=N, где D – диаметр резонатора Фабри-Перо, а N – целое число.

Второе, длина волны должна попадать в диапазон, в пределах которого свет может усиливаться индуцированным излучением. Если этот диапазон достаточно мал, то имеет место одномодовый режим с шириной спектра меньше 1 нМ. В противном случае, в область 0,5 могут попасть два или более соседних максимумов, это соответсвует многомодовому режиму с шириной спектра от одного до нескольких нМ. FP-лазер имеет не самые высокие технические характеристики, но там, где не требуется очень высокая скорость передачи данных, он, в силу более простой конструкции, наилучшим образом подходит с точки зрения цена-эффективность.

Лазерные диоды с распределенной обратной связью (DFB-лазер) и с распределенным брэгговским отражением (DBR-лазер).

Резонаторы у этих схожих типов представляют собой модернизацию плоского резонатора Фабри-Перо, в который добавлена периодическая пространственная модуляционная структура. В DFB-лазерах периодическая структура совмещена с активной областью, а в DBR-лазерах она вынесена за пределы активной области. Периодическая структура влияет на условия распространения и характеристики излучения. Так, преимуществами DFB- и DBR-лазеров по сравнению с FP-лазером являются: уменьшение зависимости длины волны лазера от точки инжекции и температуры, высокая стабильность одномодовости и практически 100%-я модуляция. Температурный коэффициент / для FP лазеров порядка 0,5-1 нМ/К0, в то время как для DFB-лазера порядка 0,07-0,09 нМ/К0. Основным недостатком DFB- и DBR-лазеров является сложная технология изготовления и, как следствие, более высокая цена.

Лазерный диод с внешним резонатором (ЕС- лазер)

В ЕС- лазерах один или оба торца покрываются специальным слоем, уменьшающим отражение, и, соответственно, одно или два зеркала ставятся вокруг активной области полупроводниковой структуры. Антиотражательное покрытие уменьшает коэффициент отражения примерно на 4 порядка, в то время, как другой торец активного слоя отражает до 30% светового потока, благодаря френелевскому отражению. Зеркало, как правило, совмещает функции дифракционной решётки. Для улучшения обратной связи между зеркалом и активным элементом устанавливается линза.

Увеличивая, или уменьшая расстояние до зеркала, а также одновременно разворачивая зеркало-решетку (это эквивалентно изменению шага решетки) — можно плавно изменять длину волны излучения, причём диапазон настройки достигает 30 нМ. В силу этого, ЕС- лазеры являются незаменимыми при разработке аппаратуры волнового уплотнения и измерительной аппаратуры для ВОЛС. По характеристикам они схожи с DFB- и DBR-лазерами.

Другие характеристики лазерных диодов.

Важными характеристиками источников излучения являются: быстродействие источника излучения; деградация и время наработки на отказ.

Быстродействие источника излучения. Экспериментально измеряемым параметром, отражающим быстродействие источника излучения, является максимальная частота модуляции. Предварительно устанавливаются пороги на уровне 0,1 и 0,9 от установившегося значения мощности светового излучения при низкочастотной модуляции прямоугольными импульсами тока. По мере роста частоты модуляции, т.е. при переходе на меньшие масштабы по временной шкале, форма световых фронтов становится более пологой. Для описания фронтов вводят время нарастания rise и время спада  face мощности излучения., определяемые как временные интервалы, за которые происходит нарастание светового сигнала от 0,1 до 0,9 и, наоборот, его спад от 0,9 до 0,1 от установившегося значения мощности. Максимальная частота модуляции определяется как частота входных электрических импульсов, при которых входной оптический сигнал перестает пересекать пороговые значения 0,1 и 0,9, оставаясь при этом во внутренней области. Для светодиодов эта частота может достигать до 200 МГц , а у лазерных диодов – значительно больше (несколько ГГц). Времена нарастания и спада предоставляют информацию о полосе пропускания W. Если предположить, что они равны между собой (а это не всегда так), то полосу пропускания можно определить по формуле:

,

при и в зависимости от их величины.

Деградация и время наработки на отказ. По мере эксплуатации оптического передатчика его характеристики постепенно ухудшаются – падает мощность излучения и, в конце концов, он выходит из строя. Это связано с деградацией полупроводникового слоя. Надёжность полупроводникового излучателя определяется средней наработкой на отказ или интенсивностью отказов. Лазерные диоды, выпускаемые ранее, обладали значительно меньшей надёжностью по сравнению со светодиодами. В настоящее время, благодаря совершенствованию конструкций и технологии изготовления, значительно повысилась надёжность лазерных диодов, которая стала такой же, как и у светодиодов. Время наработки на отказ составляет около 50 000 часов и более (5-8 лет).

FILED UNDER : Справочник

Страницы