admin / 19.07.2018

Принцип работы ветряной электростанции

Принцип работы ветрогенератора

Поиск альтернативных способов получения энергии ведется уже немало лет. Одной из разновидностей такого оборудования являются ветрогенераторы, которые способны вырабатывать электроэнергию благодаря ветру. Принцип работы ветрогенератора основывается на возможности энергии переходить из одного вида в другой.

Данное оборудование функционирует следующим образом: ветер обладает кинетической энергией, которая способна превращаться в механическую энергию ротора. Далее устройство превращает механическую энергию в электрическую. Таким образом можно получать электроэнергию бесплатно. Мощность ветряных электростанций может варьироваться в пределах 5-4500 кВт. Сегодня разработано оборудование, которое способно вырабатывать электроэнергию даже при очень слабой ветровой скорости даже 4 м/с.

Принцип работы ветряка достаточно прост, поэтому такое оборудование можно изготовить самостоятельно. Использование данного оборудования предоставит возможность не только экономить на оплате электроэнергии, но и продавать ее на условиях «зеленого тарифа» государству. Данный способ получения энергии подходит для любых объектов, находящихся в местности без централизованного энергоснабжения либо может быть использован в качестве дополнительного источника. Он является оптимальным выбором и позволяет электрифицировать автономно любой объект.

Особенности устройства ветрогенератора

Данное оборудование имеет лопасти, которые приводятся в движение вследствие воздействия силы ветра. Данное вращение запускает турбину, которая также начинает вращаться. В турбине начинает генерироваться энергия, мощность которой определяется силой ветра. С ростом ветровой энергии увеличивается и механическая, вырабатываемая турбиной.

Устройство ветрогенератора может отличаться наличием или отсутствием мультипликатора на роторе. Если он предусмотрен, энергия от турбины передается ему. Назначением мультипликатора является ускорение вращения оси. Установки без этого оборудования являются более эффективными, поскольку в них не происходит генерации дополнительной энергии (для ускорения вращения оси), а значит, и ее растраты. Такому оборудованию вполне достаточно ветровой энергии для полноценного функционирования.

Принцип работы ветряной электростанции позволил получать электроэнергию альтернативным способом и обеспечить автономность каждого объекта. Мощность данного оборудования полностью определяется размерами его лопастей. Чем больше их площадь, тем выше мощность можно получить, используя принцип работы ветроустановки.

Расчет мощности ветряного оборудования производится на основе кубической зависимости скорости ветряного потока. Кубическая зависимость означает, что если ветровой поток скорости, условно 6 м/сек, обеспечивает мощность установки 100 Вт, то увеличение потока до 12 м/сек приведет к возрастанию мощности в восемь раз – до 800 Вт.

Если турбина характеризуется небольшими размерами, для получения высокой мощности будет необходим очень сильный ветер. Если же турбина большая, она способна и при незначительной ветровой скорости выдавать необходимую мощность.

Конструкция ветряка полностью определяет его способности вырабатывать определенное количество электроэнергии за единицу времени в зависимости от скорости ветрового потока.

Конструкция ветряных генераторов энергии

Многим интересно, как устроен ветрогенератор именно с точки зрения его конструкции, поэтому мы уделим отдельное внимание этому вопросу. Такие установки включают следующие функциональные узлы:

  • установка, превращающая ветровую силу в энергию;

  • аккумуляторная батарея;

  • инвертор;

  • контроллер заряда.

Оборудование, преобразующее ветровую энергию в электрическую, включает в себя:

  • турбину, т.е. ротор, осуществляющий превращение энергии ветрового потока прямолинейного движения;

  • генератор, осуществляющий преобразование механической энергии в электрическую;

  • мачту (данный конструктивный элемент может быть типа «ферма» либо трубчатым);

  • систему управления турбиной;

  • мультипликатор (в зависимости от модели);

  • хвост или систему азимутального привода;

  • выпрямитель, который необходим при использовании генераторов переменного тока для правильной зарядки аккумулятора.

С точки зрения мощности все ветровое генераторное оборудование классифицируется на бытовое, характеризующееся мощностью 1-10 кВт и промышленное – от 500 кВт.

Модификации ветряного генераторного оборудования

Принцип работы ветроэлектростанции позволил создавать бытовое оборудование, отличающееся расположением оси турбины. В модификациях с горизонтальным расположением есть различия в системах, управляющих роторами. При азимутальном приводе фиксация направления ветра осуществляется электроникой. В зависимости от полученных данных происходит разворот от ветра в случае, если его скорость выше номинальной.

Если система управления аэромеханическая, на лопастях генераторов есть специальные подвижные элементы. Именно это конструкционное решение позволяет менять расположение плоскости лопастей в зависимости от направления ветра. Таким образом достигается наиболее эффективное функционирование оборудования.

Ветровые генераторы, характеризующиеся вертикальным расположением оси, представляют собой низкоэффективные установки, которые не рекомендуется использовать вследствие этого. К такому неэффективному оборудованию относятся:

  • «Дарье» («Darrieus») – ротор, который пригоден для использования лишь в качестве анемоскопа.

  • «Савониуса» («Savonius») – ротор, недостатком которого является существующий коэффициент опережения. Это оборудование самостоятельно запуститься не способно, его необходимо раскручивать. Если этого не сделать, получать электроэнергию станет возможным только после достижения ветром скорости 10 м/с.

Наибольшее распространение в наши дни получили ветряные крыльчатые генераторы с горизонтально расположенной осью вращения. Это обусловлено тем, что в таких установках несложно достичь 30% коэффициента использования энергии ветрового потока. Данная величина может быть при определенных условиях и выше. При вертикальной оси вращения данный коэффициент в лучшем случае достигает 20%. Следовательно, энергия ветра используется неэффективно.

Если сравнивать электроснабжение от ветрогенератора и солнечных модулей, то по схеме подключения для определенного строительного объекта они являются идентичными. Поэтому в одной такой системе энергоснабжения могут быть и те, и другие генераторы. Это позволит получить максимальное количество электроэнергии от альтернативных источников.

Особенности использования ветряного генератора

Следует учитывать, что каждые 10 метров подъема позволяют получить скорость ветра на 1 м/с больше. Соответственно, от высоты мачты непосредственно зависит, насколько эффективно сможет функционировать генераторное оборудование. Также на эффективность работы будет оказывать влияние и диаметр ротора, поэтому предпочтительнее, чтобы он был большим.

Скорость ветрового потока имеет значение для работы оборудования. При скорости 1,5 м/с лопасти начинают вращаться. Генерация энергии начинается, когда скорость ветра достигает значения 3 м/с. Для украинских ветряных генераторных установок номинальной является скорость ветра 7-9 м/с. Такое оборудование способно функционировать при скорости потока воздуха до 52 м/с, что составляет около 200 км/ч.

Ветряные генераторы характеризуются обширной сферой применения. Их устанавливают в частных домовладениях, предприятиях обособленных сооружениях и других объектах, нуждающихся в автономном энергоснабжении. Для установки предпочтительнее выбирать открытые пространства. Это могут быть возвышенности, холмы и даже мелководье.

Ветряное генераторное оборудование может быть использовано в единичном экземпляре либо группой. Для масштабных объектов такие устройства объединяют в парки. Использование возможно в качестве основного или дополнительного источника энергии.

Для обеспечения «зелёной» энергией жителей Экопарка «Суздаль» необходимо привлекать инновации со всего мира. С учетом того обстоятельства, что солнечных дней у нас не так много, стоит обратить самое пристальное внимание на использование энергии ветра. Конечно, строить гигантские ветряки, издающие шум и вибрацию в экопарке мы не будем. Это негативно повлияло бы на животный мир, уровень комфорта для жителей и туристов. Да и не вписываются такие мастодонты в наши красивые пейзажи. С технической точки зрения они также не очень эффективны, потому что им нужен постоянный ветер довольно приличной скорости.

И вот долгожданное решение. Американская инновационная компания SheerWind создала компактный ветрогенератор для слабых ветров. SheerWind, которая специализируется на разработке и производстве ветрогенераторов, представила новую ветровую турбину туннельного типа INVELOX.

Продолжительные испытания в полевых условиях продемонстрировали, что турбина может вырабатывать на 600% больше электроэнергии, чем аналоги. INVELOX не только существенно превосходит в плане КПД традиционные ветряки, но и позволяет добиться снижения капитальных затрат на установку системы до $ 750 за 1 кВт генерирующей мощности (хороший показатель – менее $ 1 тыс. за 1 кВт мощности). При этом себестоимость электроэнергии, как заявляют разработчики, значительно ниже, чем получаемая традиционным способом – меньше, чем на 1 цент за киловатт-час.

Конструкция INVELOX позволяет нагнетать воздух в верхнюю часть аэродинамической трубы, которая устанавливается вертикально. Затем воздушные массы направляются через постепенно сужающийся канал, что позволяет естественным образом ускорить поток ветра. Инженеры SheerWind утверждают, что турбина INVELOX может вырабатывать электроэнергию даже при минимальной скорости ветра (от 0.5 м/с).

Данная турбина может похвастать минимальным уровнем негативного воздействия на экологию и на животный мир. Кроме того, ветряк INVELOX отличается относительно низкой стоимостью. Эксплуатация этого энергоблока вполне может быть прибыльной даже без государственных субсидий. Все эти качества позволяют INVELOX революционизировать сектор возобновляемой энергетики в самое ближайшее время.

Интересно, что турбина занимает земельный участок в 10 раз меньше при аналогичной мощности. Компания предлагает потребителям индивидуальный дизайн ветрогенератора. Руководители компании утверждают: «Мы можем включить INVELOX воронку в дизайн любой структуры, будь то торговый центр, завод или большой сарай».

Турбины INVELOX мощностью от 40 кВтч уже поступили в продажу в Австралии и Новой Зеландии (http://www.pacificwind.co /). Компания SheerWind не стесняется приглашать инвесторов в свой проект. Такой подход широко практикуется во всем мире. Нам бы тоже это было полезно для развития инновационной «зелёной» экономики. Я знаю российских ученых, которые давно занимаются технологиями получения энергии «тихого ветра» и тоже имеют интересные разработки. Если их поддержать, то на рынке могут появиться отечественные конкурентоспособные ветрогенераторы.

А теперь представьте себе Солнечный био-вегетарий, которая использует энергию «тихого ветра». Разве не заманчиво конвертировать «тихий ветер» в органические огурчики, био-помидоры и зелень?

> Первые ветроэлектростанции

Ветрогенератор

Работа ветрогенератора Промышленные ветрогенераторы в Северном море Ветер раскручивает ротор. Выработанное электричество подаётся через контроллер на аккумуляторы. Инвертор преобразует напряжение на контактах аккумулятора в пригодное для использования

Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) — устройство для преобразования кинетической энергии ветрового потока в механическую энергию вращения ротора с последующим её преобразованием в электрическую энергию.

Ветрогенераторы можно разделить на три категории: промышленные, коммерческие и бытовые (для частного использования).

Промышленные устанавливаются государством или крупными энергетическими корпорациями. Как правило, их объединяют в сети, в результате получается ветровая электростанция. Её основное отличие от традиционных (тепловых, атомных) — полное отсутствие, как сырья, так и отходов. Единственное важное требование для ВЭС — высокий среднегодовой уровень ветра. Мощность современных ветрогенераторов достигает 8 МВт.

Мощность ветрогенератора зависит от мощности воздушного потока ( N {\displaystyle N} ), определяемой скоростью ветра и ометаемой площадью N = p S V 3 / 2 {\displaystyle N=pSV^{3}/2} ,

где: V {\displaystyle V} — скорость ветра, p {\displaystyle p} — плотность воздуха, S {\displaystyle S} — ометаемая площадь.

Типы ветрогенераторов

Существуют классификации ветрогенераторов по количеству лопастей, по материалам, из которых они выполнены, по оси вращения и по шагу винта.

Существуют два основных типа ветротурбин:

  • с вертикальной осью вращения («карусельные» — роторные (в том числе «ротор Савониуса»), «лопастные» ортогональные — ротор Дарье);
  • с горизонтальной осью круглого вращения (крыльчатые). Они бывают быстроходными с малым числом лопастей и тихоходными многолопастными, с КПД до 40%.

Также существуют барабанные и роторные ветротурбины.

Ветрогенераторы, как правило, используют три лопасти для достижения компромисса между величиной крутящего момента (возрастает с ростом числа лопастей) и скоростью вращения (понижается с ростом числа лопастей).

Преимущества и недостатки разных типов ВЭУ

Теоретически доказано, что коэффициент использования энергии ветра идеального ветроколеса (КИЭВ) горизонтальных, пропеллерных и вертикально-осевых установок равен, 0.593. Это объясняется тем, что роторы ВЭУ обоих типов используют один и тот же эффект подъемной силы, возникающий при обтекании ветровым потоком профилированной лопасти, К настоящему времени достигнутый на горизонтальных пропеллерных ВЭУ коэффициент использования энергии ветра составляет 0.4. На данный момент этот коэффициент у ветрогенераторов (ветроустановок) ГРЦ-Вертикаль составляет 0.38. Проведенные экспериментальные исследования российских вертикально-осевых установок показали, что достижение значения 0.4-0.45 — вполне реальная задача. Таким образом, можно отметить, что коэффициенты использования энергии ветра горизонтально-осевых пропеллерных и вертикально-осевых ВЭУ близки.

Проблемы эксплуатации промышленных ветрогенераторов

Внутри башни11 × E-126 бельгийской ВЭС Estinnes в июле 2010, за месяц до завершения строительства станции11 × E-126 (11 × 7,5 МВт) бельгийской ВЭС Estinnes 10 октября 2010 года.

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 3 апреля 2016 года.

Промышленный ветрогенератор строится на подготовленной площадке за 7-10 дней. Получение разрешений регулирующих органов на строительство ветровой фермы может занимать год и более. Кроме того, для обоснования строительства ветроустановки или ветропарка необходимо проведение длительных (не менее года) исследований ветра в районе строительства. Эти мероприятия значительно увеличивают срок реализации ветроэнергетических проектов.

Для строительства необходимы дорога до строительной площадки, место для размещения узлов при монтаже, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.

В ходе эксплуатации промышленных ветрогенераторов возникают различные проблемы:

  • Неправильное устройство фундамента. Если фундамент башни неправильно рассчитан, или неправильно устроен дренаж фундамента, башня от сильного порыва ветра может упасть.
  • Обледенение лопастей и других частей генератора. Обледенение способно увеличить массу лопастей и снизить эффективность работы ветрогенератора. Для эксплуатации в арктических областях части ветрогенератора должны быть изготовлены из специальных морозостойких материалов. Жидкости, используемые в генераторе, не должны замерзать. Может замёрзнуть оборудование, замеряющее скорость ветра. В этом случае эффективность ветрогенератора может серьёзно снизиться. Из-за обледенения приборы могут показывать низкую скорость ветра, и ротор останется неподвижным.
  • Отключение/поломка тормозной системы. При этом лопасть набирает слишком большую скорость и, как следствие, ломается.
  • Отключение. При резких колебаниях скорости ветра срабатывает электрическая защита аппаратов, входящих в состав системы, что снижает эффективность системы в целом. Так же для больших ветростанций большая вероятность срабатывания защиты на отходящих ЛЭП.
  • Нестабильность работы генератора. Из-за того, что в большинстве промышленных ветрогенерирующих установках стоят асинхронные генераторы, стабильная работа их зависит от постоянства напряжения в ЛЭП.
  • Пожары. Пожар может возникнуть из-за трения вращающихся частей внутри гондолы, утечки масла из гидравлических систем, обрыва кабелей и т. д. Пожары ветрогенераторов редки, но их трудно тушить из-за отдалённости ветровых электростанций и большой высоты, на которой происходит пожар. На современных ветрогенераторах устанавливаются системы пожаротушения.
  • Удары молний. Удары молний могут привести к пожару. На современных ветрогенераторах устанавливаются молниеотводящие системы.
  • Шум и вибрация.

Перспективные разработки

Норвежская компания StatoilHydro и немецкий концерн Siemens AG разработали плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в июне 2009 года. Турбина под названием Hywind, разработанная Siemens Renewable Energy, весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалеку от юго-западного берега Норвегии. Компания планирует в будущем довести мощность турбины до 5 МВт, а диаметр ротора — до 120 метров. Аналогичные разработки ведутся в США.

Компания Magenn разработала специальный аппарат с установленным на нём ветрогенератором, который сам поднимается на высоту 120—300 метров. Нет необходимости строить башню и занимать землю. Аппарат работает в диапазоне скоростей ветра от 1 м/с до 28 м/с. Аппарат может перемещаться в ветряные регионы или быстро устанавливаться в местах катастроф.

Компания Windrotor предлагает конструкцию ротора мощной турбины, позволяющую значительно увеличить его размеры и коэффициент использования энергии ветра. Предполагается, что эта конструкция станет новым поколением роторов ветровых турбин.

В мае 2009 года в Германии компанией Advanced Tower Systems (ATS) был запущен в эксплуатацию первый ветрогенератор, установленный на гибридной башне. Нижняя часть башни высотой 76,5 метров построена из железобетона. Верхняя часть высотой 55 метров построена из стали. Общая высота ветрогенератора (вместе с лопастями) составляет 180 метров. Увеличение высоты башни позволит увеличить выработку электроэнерии до 20 %.

В конце 2010 года испанские компании Gamesa, Iberdrola, Acciona Alstom Wind, Técnicas Reunidas, Ingeteam, Ingeciber, Imatia, Tecnitest Ingenieros и DIgSILENT Ibérica создали группу для совместной разработки ветрогенератора мощностью 15,0 МВт.

Евросоюз создал исследовательский проект UpWind для разработки офшорного ветрогенератора мощностью 20 МВт.

В 2013 году японская компания Mitsui Ocean Development & Engineering Company разработала гибридную установку: на единой плавающей в воде оси установлена ветровая турбина и турбина, работающая от приливной энергии.

Малые ветрогенераторы

Три типа ветрогенераторов в действииМалый роторный ветрогенератор на крыше зданияПарусный ветрогенератор

К малой ветроэнергетике относятся установки мощностью менее 100 кВт. Установки мощностью менее 1 кВт относятся к микро-ветровой энергетике. Они применяются на яхтах, сельскохозяйственных фермах для водоснабжения и т. д.

Строение малой ветровой установки

  1. Ротор; лопасти; ветротурбина; хвост, ориентирующий ротор против ветра
  2. Генератор
  3. Мачта с растяжками
  4. Контроллер заряда аккумуляторов
  5. Аккумуляторы (обычно необслуживаемые на 24 В)
  6. Инвертор (= 24 В -> ~ 220 В 50Гц), подключенный к электросети

Малые ветрогенераторы могут работать автономно, то есть без подключения к общей электрической сети.

Некоторые современные бытовые ИБП имеют модуль подключения источника постоянного тока специально для работы с солнечными батареями или ветрогенераторами. Таким образом, ветрогенератор может быть частью домашней системы электропитания, снижая потребление энергии от электросети.

Плюсы и минусы эксплуатации

В настоящее время, несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько-нибудь значительную величину у основной массы производств на фоне других затрат. Ключевым для потребителя остаётся надёжность и стабильность электроснабжения.

Основными факторами, приводящими к удорожанию энергии для использования в промышленности, получаемой от ветрогенераторов, являются:

  • необходимость получения электроэнергии промышленного качества ~ 220 В 50 Гц (применяется инвертор, ранее для этой цели применялся умформер)
  • необходимость автономной работы в течение некоторого времени (применяются аккумуляторы);
  • необходимость длительной бесперебойной работы потребителей (применяется дизель-генератор);

Считается, что применение малых автономных ветрогенераторов в быту малоцелесообразно из-за:

  • высокой стоимости аккумуляторных батарей: ~ 25 % стоимости установки (используется в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети);
  • достаточно высокой стоимости инвертора (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в переменное напряжение стандарта бытовой электросети (220 В, 50 Гц).
  • нередкой необходимости добавлять к нему дизель-генератор, сравнимый по стоимости со всей установкой.

Однако, при наличии общей электросети и современного ИБП с двойным преобразованием эти факторы становятся неактуальными, также часто такие ИБП предусматривают возможность дополнения различными нестабильными источниками постоянного тока, такими как ветрогенератор или солнечная батарея.

Наиболее экономически целесообразным в настоящее время является получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощью ТЭНов в тепло для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:

  • Отопление является основным энергопотребителем любого дома.
  • Схема ветрогенератора и управляющей автоматики кардинально упрощается.
  • Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле.
  • В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.
  • Потребление тепла не так требовательно к качеству и бесперебойности, температуру воздуха в помещении можно поддерживать в широком диапазоне: 19-25 °С; в бойлерах горячего водоснабжения: 40-97 °С, без ущерба для потребителей.

Развитие

Строительство Фундамента для ветрогенератораМонтаж ветрогенератора

Индустрия домашних ветрогенераторов активно развивается, и за вполне умеренные деньги уже сейчас можно приобрести ветровую установку и на долгие годы обеспечить энергонезависимость своему загородному дому. Обычно для обеспечения электроэнергией небольшого дома вполне достаточно установки номинальной мощностью 1 кВт при скорости ветра 8 м/с. Если местность не ветреная, ветрогенератор можно дополнить фотоэлектрическими элементами или дизель-генератором, а ветрогенераторы с вертикальными осями могут быть дополнены меньшими ветрогенераторами (например, турбина Дарье может быть дополнена ротором Савониуса. При этом одно другому не мешает — источники будут дополнять друг друга).

Наиболее перспективными регионами для развития малой ветроэнергетики считаются регионы со стоимостью электроэнергии более $0,1 за кВт·ч. Себестоимость электроэнергии, производимой малыми ветрогенераторами в 2006 г. в США составляла $0,10-$0,11 за кВт·ч.

Американская ассоциация ветровой энергетики (AWEA) ожидает, что в ближайшие 5 лет себестоимость снизится до $0,07 за кВт·ч. По данным AWEA, в США в 2006 г. было продано 6807 малых ветровых турбин. Их суммарная мощность 17 543 кВт. Их суммарная стоимость $56 082 850 (примерно $3200 за кВт мощности). В остальном мире в 2006 г. были проданы 9502 малых турбины (без учёта США), их суммарная мощность 19 483 кВт.

Департамент Энергетики США (DoE) в конце 2007 года объявил о готовности финансирования особо малых (до 5 кВт) ветрогенераторов персонального использования.

AWEA прогнозирует, что к 2020 году суммарная мощность малой ветровой энергетики США вырастет до 50 тыс. МВт, что составит около 3 % от суммарных мощностей страны. Ветровые турбины будут установлены в 15 млн домах и на 1 млн малых предприятий. В отрасли малой ветроэнергетики будут заняты 10 тыс. человек. Они ежегодно будут производить продукции и услуг на сумму более чем $1 млрд.

В России тенденция установки ветрогенераторов для оснащения домов электричеством только зарождается. На рынке присутствуют буквально несколько производителей маломощных бытовых ветрогенераторов именно для домашнего использования. Цены на ветрогенераторы мощностью 1 кВт с полной комплектацией начинаются от 35-40 тыс. рублей (на 2012 год). Сертификация на установку данного оборудования не требуется.

Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

> См. также

  • Ветроэнергетика
  • Ветровая электростанция
  • Закон Беца

Примечания

  1. ↑ Виды ветрогенераторов. Проверено 5 февраля 2013. Архивировано 11 февраля 2013 года.
  2. ↑ 1 2 Билимович Б. Ф. Законы механики в технике. — М.: Просвещение, 1975. — Тираж 80000 экз. — С. 173.
  3. ↑ Почему у ветрогенераторов три лопасти, а не две или четыре? // Популярная механика. — 2018. — № 5. — С. 16.
  4. ↑ Что лучше — вертикальный или горизонтальный ветрогенератор? Преимущества и недостатки. КОЭФФИЦИЕНТ ИСПОЛЬЗОВАНИЯ ЭНЕРГИИ ВЕТРА.
  5. ↑ Брага Н. Создание роботов в домашних условиях. — М.: НТ Пресс, 2007. — С. 131 — ISBN 5-477-00749-4.
  6. ↑ В Норвегии запустят плавучую прибрежную ветровую турбину
  7. ↑ 1 2 Jorn Madslien. Floating wind turbine launched, BBC NEWS, London: BBC, стр. 5 June 2009. Проверено 16 января 2019.
  8. ↑ New Tower Reaches High to Catch the Wind
  9. ↑ Spanish Companies Plan a 15-MW Wind Turbine December 1, 2010
  10. ↑ http://www.renewableenergyworld.com/rea/news/article/2012/07/wind-turbine-blades-push-size-limits?cmpid=rss Chris Webb Wind Turbine Blades Push Size Limits, 10.07.2012
  11. ↑ Hybrid Wind-Tidal Turbine To Be Installed off Japanese Coast Июль 12, 2013
  12. ↑ Tildy Bayar. World Wind Market: Record Installations, But Growth Rates Still Falling (англ.). renewableenergyworld.com (4 August 2011). — 10 крупнейших поставщиков 2010 года по данным компании. Проверено 28 мая 2013. Архивировано 28 мая 2013 года.
  13. ↑ http://www.windtech-international.com/industry-news/news/industry-news/global-wind-turbine-manufacturing-capacity-has-far-surpassed-demand Global wind turbine manufacturing capacity has far surpassed demand Published: 11 December 2014
  14. ↑ Stephen Lacey. Wind Turbine Prices Remain Low (англ.). renewableenergyworld.com (4 August 2010). — По данным компании, цены ветряных турбин снизилась на 15% за последние два года. Проверено 28 мая 2013. Архивировано 28 мая 2013 года.

FILED UNDER : Справочник

Страницы