admin / 30.11.2018

Подключение трехфазного двигателя

Подключение электродвигателя 380В на 220В выполняется через конденсатор. Для такого подключения необходимо использовать бумажные (или пусковые) конденсаторы, при этом ВАЖНО чтобы номинальное напряжение конденсатора было больше либо равно напряжению сети. Могут применяться конденсаторы следующих марок (типов):

МБГО, МБГЧ, МБГП, МБГТ, МБГВ, КБГ, БГТ, ОМБГ, K42-4, К42-19 и др.

Емкость конденсатора можно определить по формулам приведенным ниже, либо с помощью онлайн расчета емкости.

Первое, что необходимо сделать — это правильно соединить выводы обмоток электродвигателя. Как уже известно из статьи: схемы соединения обмоток электродвигателя обмотки электродвигателя можно соединить по схеме «звезда» (обозначается — Y) или по схеме «треугольник» (обозначается — Δ), при этом, как правило для подключения электродвигателя на 220В применяется схема «треугольник» , что бы определиться со схемой соединения обмоток необходимо посмотреть паспортные данные электродвигателя на прикрепленном к нему шильдике:

Запись: «Δ/ Y 220/380V» обозначает, что для подключения данного электродвигателя на 220В необходимо соединить его обмотки по схеме «треугольник», а для подключения на 380В — по схеме «звезда», как это сделать .

Второе, с чем необходимо определиться — это как будет производиться запуск электродвигателя, под нагрузкой (когда уже в момент запуска электродвигателя к его валу приложена нагрузка и он не может свободно вращаться) либо без нагрузки (когда вал электродвигателя в момент запуска свободно вращается, например наждак, вентилятор, циркулярная пила и т.п.).

При запуске двигателя без нагрузки применяется 1 конденсатор который называется рабочим, а при необходимости запуска двигателя под нагрузкой в схеме, помимо рабочего, дополнительно применяется 2-ой конденсатор который называется пусковым, он включается только в момент запуска.

Разберем схемы подключения электродвигателя 380 на 220 для обоих случаев:

1) Подключение электродвигателя через конденсатор по схеме «треугольник», запуск — без нагрузки:

Емкость рабочего конденсатора для подключения электродвигателя при схеме соединения обмоток «треугольником» рассчитывается по формуле:

Cр=4800 * Iн/Uс ; мкф

где: Iн-номинальный ток электродвигателя в Амперах (принимается в соответствии с паспортными данными электродвигателя); Uс — напряжение сети в Вольтах.

В схеме для включения электродвигателя применяется однополюсный автоматический выключатель, однако его использование необязательно, можно включать электродвигатель напрямую в сеть через розетку используя обычную штепсельную вилку или, например, включать его через обычный выключатель освещения.

2) Подключение электродвигателя через конденсатор по схеме «звезда», запуск — без нагрузки:

Емкость рабочего конденсатора для подключения электродвигателя при схеме соединения обмоток «звездой» рассчитывается по формуле:

Cр=2800 * Iн/Uс ; мкф

где: Iн-номинальный ток электродвигателя в Амперах (принимается в соответствии с паспортными данными электродвигателя); Uс — напряжение сети в Вольтах.

В случае если запуск двигателя 380 на 220 Вольт происходит под нагрузкой, в схеме дополнительно должен применяться пусковой конденсатор иначе силы момента на валу электродвигателя не хватит для его раскрутки и двигатель не сможет запуститься.

Пусковой конденсатор подключается параллельно рабочему и должен включаться только в момент запуска двигателя, после того как двигатель наберет обороты его необходимо отключать.

Емкость пускового конденсатора должна быть в 2,5 — 3 раза больше рабочего.

Cп= (2,5…3) * Cр ; мкф

При данной схеме для запуска электродвигателя необходимо нажать и держать кнопку SB, после чего подать напряжение включив автоматический выключатель, как только двигатель запустится кнопку SB необходимо отпустить. В качестве кнопки так же можно использовать обычный выключатель.

Однако лучшим вариантом для подключения электродвигателя 380 на 220 является использование ПНВС-10 (пускатель нажимной с пусковым контактом):

Кнопки «пуск» в этих пускателя имеют 2 контакта один из них при отпускании кнопки «пуск» размыкается отключая пусковой конденсатор, а второй остается замкнутым и через него подается напряжение на электродвигатель через рабочий конденсатор, отключение производится кнопкой «стоп».

payaem.ru

Трёхфазные движки используются для циркулярок, заточки различных материалов, станков для сверления и т.п.

Имеется много вариантов запуска трёхфазных двигателей в однофазной сети, но самый эффективный, это подключение третьей обмотки через фазосдвигающий кондесатор. Нужно учитывать, что конденсатор сдвигает фазу третьей обмотки на 90 градусов, между первой и второй фазами сдвиг очень мал, электромотор начинает терять мощность около 40 — 50% на включении обмоток по схеме треугольника.

Для того, чтобы Электродвигатель с конденсаторным пуском работал хорошо, нужно чтобы ёмкость конденсатора менялась в зависимоти от количества оборотов. На деле этого добиться довольно тяжело, поскольку двигателем обычно управляют двухступенчатым способом, сначала активируют с пусковым конденсатором (с помощью больших пусковых токов), а после того как движок разгонится его отсоединяют и остаётся только рабочий (рис.1).

Если нажать на кнопку SB1 (её можно снять со стиральной машины — пускатель ПНВС-10 УХЛ2) электромотор М начинает набирать оброты, когда он разгонится кнопку отпускают. SB1.2 размыкается, a SB1.1 и SB1.3 остаются в замкнутом состоянии. Их размыкают, чтобы остановить движок. Бывает такое, что SB 1.2 в кнопке не отходит, в таком случае подложите под него шайбу таким образом, чтобы он отошёл. Чтобы соединить обмотки электродвигателя по схеме «треугольник» ёмкость С2 (рабочего конденсатор) определим с помощью формулы:

С2=4800 I/Uгде I — ток, потребляемый двигателем, А;U — напряжение сети, В.Ток, который потребляет электродвигатель, можно измерить амперметром или использовать формулу:

где Р — мощность электромтора, Вт;U — напряжение сети, В;n— КПД ; cos? — коэффициент мощности

Ёмкость С1 (пускового конденсатор) нужно выбирать в 2 — 2.5 раза больше рабочего на большой нагрузке на вал, их допустимые напряжения должны быть в 1.5 раза больше напряжения сети. В нашём случае наиболее лучшие конденсаторы это МГБО, МБГП, МБГЧ, у которых рабочее напряжение 500 В и больше.

Пусковые конденсаторы нужно будет зашунтировать с помощью резистора R1 сопротивлением 200 — 500 кОм, через него выходит остаток электрического заряда.

Реверсировать электромотор нужно с помощью переключения фазы на его обмотке тумблером SA1 (рис. 1) типа ТВ1 — 4.

На холостом ходу по питаемой через конденсаторы по обмотке протекает ток па 20 — 40% больше номинального. Поэтому уменьшайте ёмкость конденсатора С2 если двигатель будет часто работать в недогруженом режиме или на холостм ходу. Для активации двигателя с мощностью 1,5 кВт будет достаточно использовать рабочий конденсатор ёмкостью 100 мкф, а пусковой — 60 мкФ. Ёмкости рабочих и пусковых конденсаторов зависят от мощности самого двигателя, эти значения представлены в таблице, которая указана выше.

Желательно конечно использовать бумажные конденсаторы в роли пусковых, но если такой возможности у вас нет, то можно в качестве альтернативы использовать оксидные, т.е. электролитические. На рис. 2 показано как производить замену бумажных конденсаторов на электролитические. Положительная полуволна переменного тока протекает через цепь VD1C1, а отрицательная — через VD2C2, по это причине электролиты можно использовать с меньшим допустимым напряжением, чем для бумажных конденсаторов. Для бумажных конденсаторов нужно напряжение 400 В и более, то для электролита вполне хватает 300 — 350 В, по той причине, что он проводит лишь одну полуволну переменного тока и поэтому к нему прикладывается только половина напряжения, для точной надежности он должен держать амплитудное напряжение однофазной сети, это около 300 В. Этот расчет аналогичен расчету бумажных конденсаторов.

Схема для включения трёхфазного двигателя в однофазную сеть, используя электролитические конденсаторы показана на рис. 3. Чтобы подобрать нужную емкость бумажных и оксидных конденсаторов, лучше всего измерить ток в точках а, в, с — эти токи в обязательном порядке должны быть равны между собой при оптимальной нагрузке на вал электродвигателя. Диоды VD1, VD2 подбирайте с обратным напряжением не меньше 300 В и 1пр. мах=10А. Если мощность дыижка больше, то диоды устанавливайте на теплоотводы, по два в плече, в противном случае может случиться пробой диодов и через оксидный конденсатор побежит переменный ток, после чего, спустя немного времени электролит скорее всего нагреется и разорвётся. Электролитические конденсаторы в роли рабочих использовать не рекомендуется, потому что длительный проход через них высоких токов, как правило приводит к их нагреву и взрыву. Лучше используйте их для пусковых.

В случае если ваш трехфазный электромотор будет использоваться на динамических (высоких) нагрузках на вал, лучше используйте схему подключения пусковых конденсаторов при помощи токового реле, которое будет при больших нагрузках на вал автоматически включать и выключать пусковые конденсаторы (рис.3).

Во время подключения обмоток трехфазного электродвигателя в однофазную сеть с помощью схемы, которая представлена на рис. 4, мощность электромотора составляет 75% от номинальной мощности в трехфазном режиме, это значит потери составляют около 25%, потому что обмотки А и В подключены противофазно на всё напряжение 220 В, напряжение вращения определяется включением обмотки С. Фазирование обмоток изображено в виде точек.

Самые более надёжные,практичные и удобные при работе с трехфазными электродвигателями резисторно-индуктивноемкостные преобразователи однофазной сети 220 Вольт в трехфазную сеть, с токами в фазах до 4 ампер и сдвигом напряжений в фазах приверно 120 градусов. Эти устройства универсальны, устанавливаются они в жестяном корпусе и позволяют подсоединять трехфазные электромоторы мощностью до 2,5 килловатт в однофазную сеть 220 Вольт почти без потерь мощности.

В преобразователе используем дроссель с воздушным зазором. Его устройство представлено на рис. 6. Если правильно подобраны R, С и соотношения витков в секциях обмотки дросселя, то такой преобразователь даёт нормальную длительную работу электромоторов, это независимо от их характеристик и уровня нагрузки на вал. Вместо индуктивности представлено индуктивное сопротивление XL, потому что его легче измерить, обмотка дросселя крайними выводами через амперметр подсоединяется к напряжению 100 — 220 Вольт, частотой 50 Герц, параллельно с вольтметром. Индуктивное сопротивление (активным сопротивлением можно пренебречь) определяется отношением напряжения в вольтах к току в амперах XL=U/J.

Конденсатор С1 должен жержать напряжение не меньше 250 Вольт, а конденсатор С2 — не меньше чем 350 Вольт. Если вы используете конденсаторы КБГ, МБГ-4, то в таком случае напряжение будет соответствовать номиналу, который указан на маркировке, а конденсаторы МБГП, МБГО при посоединении к цепи переменного тока должны быть с двухкратным запасом напряжения. Резистор R1 должен быть рассчитан на ток до ЗА, это значит на мощность около 700 Вт (наматывается никелево-хромовая проволока диаметром 1,3 — 1,5 мм на фарфоровой трубке с передвигающейся скобой, которая позволяет получать необходимое сопротивление для различных мощностей электродвигателя). Резистор обязательно должен быть защищен от перегрева и ограждён от остальных компонентов, токоведущих частей, а также от возможного конакта человека с ним. Металлическое шасси корпуса в обязательном порядке необходимо заземлить.

Сечение магнитопровода дросселя должно составлять S=16 — 18cm2, диаметр провода d=l,3 — 1,5 мм, общее число витков W=600 — 700. Форма магнитопровода и марка стали могут быть любыми, главное помнить о воздушном зазоре (это даст вам возможность изменять индуктивное сопротивление), которое устанавливаем при помощи винтов (рис. 6). Для того чтобы избежать сильного дребезжания дросселя, нужно между Ш-об-разными половинами магнитопровода проложить деревянный брусок и зажать винтами. В роли дросселя подойдут силовые трансформаторы от ламповых цветных телевизоров с мощностью 270 — 450 Ватт. Обмотка дросселя в целом производится в виде одиной катушки, которая имеет три секции и четыре вывода. Если вы будете использовать сердечник с постоянным воздушным зазором, то вам придется изготавливать пробную катушку,которая не имеет промежуточных отводов, сделать дроссель с примерным зазором, подключить в сеть и измерить XL. XL необходимо отмотать или домотать ещё немного витков. Выясните необходимое количество витков, мотайте необходимую катушку, разделите каркас на секции в отношении W1:W2:W3=1:1:2. Итак, если у нас общее колисество витков равно 600, то из этого исходит Wl =W2= 150, a W3=300. Для того чтобы поднять выходную мощность преобразователя и не допустить при этом несиметрии напряжений, необходимо поменять значения XL, Rl, Cl, С2, которые отталкиваются от того,что токи в фазах А, В, С должны быть равными при номинальной нагрузке на вал электромотора. В режиме недогрузки электродвигателя несимметрия напряжений фаз не представляет какой либо опасности, в том случае если наибольший из токов фаз не будет превышать номинальный ток электродвигателя. Для пересчета параметров преобразователя на иную мощность используется формула:

Однофазный двигатель работает за счет переменного электрического тока и подключается к сетям с одной фазой. Сеть должна иметь напряжение 220 Вольт и частоту, равную 50 Герц.

Электромоторы этого типа находят применение в основном в маломощных устройствах:

  1. Бытовой технике.
  2. Вентиляторах низкой мощности.
  3. Насосах.
  4. Станках для обработки сырья и т. п.

Выпускаются модели с мощностью от 5 Вт до 10 кВт.

Значения КПД, мощности и пускового момента, у однофазных моторов существенно ниже, чем у трехфазных устройств тех же размеров. Перегрузочная способность также выше у двигателей с 3 фазами. Так, мощность однофазного механизма не превышает 70% мощности трехфазного того же размера.

устройство

Устройство:

  1. Фактически имеет 2 фазы, но работу выполняет лишь одна из них, поэтому мотор называют однофазным.
  2. Как и все электромашины, однофазный двигатель состоит из 2 частей: неподвижной (статор) и подвижной (ротор).
  3. Представляет собой асинхронный электромотор, на неподвижной составляющей которого имеется одна рабочая обмотка, подключаемая к источнику однофазного переменного тока.

К сильным сторонам двигателя данного типа можно отнести простоту конструкции, представляющую собой ротор с короткозамкнутой обмоткой. К недостаткам – низкие значения пускового момента и КПД.

Главный минус однофазного тока – невозможность генерирования им магнитного поля, выполняющего вращение. Поэтому однофазный электромотор не запустится сам по себе при подключении к сети.

В теории электрических машин, действует правило: чтобы возникло магнитное поле, вращающее ротор, на статоре должно быть по крайней мере 2 обмотки (фазы). Требуется также смещение одной обмотки на некоторый угол относительно другой.

Во время работы, происходит обтекание обмоток переменными электрическими полями:

  1. В соответствии с этим, на неподвижном участке однофазного мотора расположена так называемая пусковая обмотка. Она смещена на 90 градусов по отношению к рабочей обмотке.
  2. Сдвиг токов можно получить, включив в цепь фазосдвигающее звено. Для этого могут использоваться активные резисторы, катушки индуктивности и конденсаторы.
  3. В качестве основы для статора и ротора используется электротехническая сталь 2212.

Неверно, называть однофазными такие электродвигатели, которые по своему строению являются 2- и 3-фазными, но подключаются к однофазному источнику питания посредством схем согласования (конденсаторные электромоторы). Обе фазы таких устройств являются рабочими и включены все время.

Принцип действия и схема запуска

Принцип работы:

  1. Электрическим током порождается пульсирующее магнитное поле на статоре мотора. Это поле можно рассматривать как 2 разных поля, которые вращаются разнонаправлено и имеют равные амплитуды и частоты.
  2. Когда ротор находится в неподвижном состоянии, эти поля приводят к появлению равных по модулю, но разнонаправленных моментов.
  3. Если у двигателя отсутствуют специальные пусковые механизмы, то при старте результирующий момент будет равен нулю, а значит – двигатель не будет вращаться.
  4. Если же ротор приведен во вращение в какую-то сторону, то соответствующий момент начинает преобладать, а значит, вал двигателя продолжит вращаться в заданном направлении.

Схема запуска:

  1. Запуск производится магнитным полем, которое вращает подвижную часть мотора. Оно создается 2 обмотками: главной и дополнительной. Последняя имеет меньший размер и является пусковой. Она подключается к основной электрической сети через ёмкость или индуктивность. Подключение осуществляется только на время пуска. В моторах с низкой мощностью, пусковая фаза замкнута накоротко.
  2. Пуск двигателя осуществляют удержанием пусковой кнопки на несколько секунд, вследствие чего происходит разгон ротора.
  3. Во время отпускания пусковой кнопки, электромотор из двухфазного режима переходит в однофазный, и его работа поддерживается соответствующей компонентой переменного магнитного поля.
  4. Пусковая фаза рассчитана на кратковременную работу– как правило, до 3 с. Более длительное время нахождения под нагрузкой, может привести к перегреву, возгоранию изоляции и поломке механизма. Поэтому, важно своевременно отпустить пусковую кнопку.
  5. С целью повышения надежности в корпус однофазных двигателей встраивают центробежный выключатель и тепловое реле.
  6. Функция центробежного выключателя состоит в отключении пусковой фазы, когда ротор набирает номинальную скорость. Это происходит автоматически — без вмешательства пользователя.
  7. Тепловое реле отключает обе фазы обмотки, если они нагреваются выше допустимого.

Подключение

Для работы устройства требуется 1 фаза с напряжением 220 Вольт. Это означает, что подключить его можно в бытовую розетку. Именно в этом причина популярности двигателя среди населения. На всех бытовых приборах, от соковыжималки до шлифовальной машины, установлены механизмы этого типа.

аподключение с пусковым и рабочим кондсенсаторами

Существует 2 типа электромоторов: с пусковой обмоткой и с рабочим конденсатором:

  1. В первом типе устройств, пусковая обмотка работает посредством конденсатора только во время старта. После достижения машиной нормальной скорости, она отключается, и работа продолжается с одной обмоткой.
  2. Во втором случае, для моторов с рабочим конденсатором, дополнительная обмотка подключена через конденсатор постоянно.

Электродвигатель может быть взят от одного прибора и подключен к другому. Например, исправный однофазный мотор от стиральной машины или пылесоса может использоваться для работы газонокосилки, обрабатывающего станка и т.п.

Существует 3 схемы включения однофазного двигателя:

  1. В 1 схеме, работа пусковой обмотки выполняется посредством конденсатора и только на период запуска.
  2. 2 схема также предусматривает кратковременное подключение, однако оно происходит через сопротивление, а не через конденсатор.
  3. 3 схема является самой распространенной. В рамках этой схемы конденсатор постоянно подключен к источнику электричества, а не только во время старта.

Подключение электромотора с пусковым сопротивлением:

  1. Вспомогательная обмотка таких устройств имеет повышенное активное сопротивление.
  2. Для запуска электромашины этого типа, может быть использован пусковой резистор. Его следует последовательно подключить к пусковой обмотке. Таким образом, можно получить сдвиг фаз 30° между токами обмоток, чего будет вполне достаточно для старта механизма.
  3. Кроме того, сдвиг фаз может быть получен путем использования пусковой фазы с большим значением сопротивления и меньшей индуктивностью. У такой обмотки меньшее количество витков и тоньше провод.

Подключение мотора с конденсаторным пуском:

  1. У данных электромашин пусковая цепь содержит конденсатор и включается только на период старта.
  2. Для достижения максимального значения пускового момента, требуется круговое магнитное поле, которое выполняет вращение. Чтобы оно возникло, токи обмоток должны быть повернуты на 90° относительно друг друга. Такие фазосдвигающие элементы, как резистор и дроссель не обеспечивают необходимый сдвиг фаз. Только включение в цепь конденсатора позволяет получить сдвиг фаз 90°, если правильно подобрать емкость.
  3. Вычислить, какие провода к какой обмотке относятся, можно путем измерения сопротивления. У рабочей обмотки его значение всегда меньше (около 12 Ом), чем у пусковой (обычно около 30 Ом). Соответственно, сечение провода рабочей обмотки больше, чем у пусковой.
  4. Конденсатор подбирается по потребляемому двигателем току. Например, если ток равен 1.4 А, то необходим конденсатор емкостью 6 мкФ.

Обзор моделей

электродвигатель АИР

Одними из наиболее популярных являются электродвигатели серии АИР. Существуют модели, исполненные на лапах 1081, и модели комбинированного исполнения — лапы + фланец 2081.

Электродвигатели в исполнении лапы+фланец обойдутся примерно на 5% дороже, чем аналогичные на лапах.

Как правило, производители предоставляют гарантию от 12 месяцев.

Для электродвигателей, имеющих высоту вращения 56-80 мм, исполнение станины алюминиевое. Двигатели с высотой вращения более 90 мм представлены в чугунном исполнении.

Модели различаются между собой по мощности, частоте вращения, высоте оси вращения, КПД.

Чем мощнее двигатель, тем выше его стоимость:

  1. Двигатель с мощностью 0.18 кВт можно приобрести за 3 тыс. рублей (электродвигатель АИРЕ 56 B2).
  2. Модель с мощностью 3 кВт будет стоить уже около 10 тыс. рублей (АИРЕ 90 LB2).

Что касается частоты вращения, то наиболее распространены модели с частотами 1500 и 3000 оборотов/минуту, хотя существуют двигатели и с другими значениями частот. При равных мощностях, стоимость двигателя с частотой вращения 1500 об/мин немного выше, чем имеющего частоту 3000 об/мин.

Высота оси вращения для моторов с 1 фазой варьируется от 56 мм до 90 мм и напрямую зависит от мощности: чем мощнее двигатель, тем больше высота оси вращения, а значит и цена.

Различные модели имеют разный КПД, обычно от 67% до 75%. Больший КПД соответствует большей стоимости модели.

Следует обратить внимание также на двигатели, выпускаемые итальянской компанией ААСО, основанной в 1982 году:

  1. Так, электромотор ААСО серии 53, рассчитан специально для применения в газовых горелках. Эти моторы также могут быть использованы в установках для мойки, генераторах теплого воздуха, системах централизованного обогрева.
  2. Электромоторы серий 60, 63, 71 разработаны для использования в установках водоснабжения. Также, фирма предлагает универсальные двигатели серий 110 и 110 компакт, которые отличаются разнообразной сферой применения: горелки, вентиляторы, насосы, подъемные устройства и другое оборудование.

Купить моторы производства компании ААСО можно по цене от 4600 рублей.

Схемы подключения к сети

Для начала имеет смысл вспомнить схему подключения трехфазного двигателя к трехфазной сети.

Схема подключения трехфазного электродвигателя на 220 В по схеме «Звезда» и «Треугольник»

Для простоты восприятия магнитный пускатель и прочие узлы коммутации не изображены. Как видно из схемы, каждая обмотка мотора питается от своей фазы. В однофазной же сети, как следует из ее названия, «фаза» всего одна. Но и ее достаточно для питания трехфазного электромотора. Взглянем на асинхронный двигатель, подключенный на 220 В.

Подключение электродвигателя 380 В на 220 В через конденсатор по схеме «Звезда» и «Треугольник»

Здесь одна обмотка трехфазного электромотора напрямую включена в сеть, две остальные соединены последовательно, а на точку их соединения подается напряжение через фазосдвигающий конденсатор С1. С2 является пусковым и включается кнопкой В1 с самовозвратом только в момент пуска: как только двигатель запустится, ее нужно отпустить.

Сразу возникает несколько вопросов:

  1. Насколько такая схема эффективна?
  2. Как обеспечить реверс двигателя?
  3. Какие емкости должны иметь конденсаторы?

FILED UNDER : Справочник

Submit a Comment

Must be required * marked fields.

:*
:*