admin / 01.04.2018

Пирометр

Обзор недорогих моделей пирометров. Выбор пирометра.

Температура — важный критерий при диагностике проблем у большинства типов оборудования, от печей и паровых котлов до морозильников. Если при проверке оборудования обнаруживается, что температура контролируемого объекта слишком низка или высока по сравнению с нормальным режимом работы, то это должно послужить предупреждением о возможности возникновения аварийной ситуации.

Среди методов измерения температуры можно выделить два основных: измерение температуры контактным и бесконтактным способом. Однако контактные термометры во многих случаях оказываются слишком медленными для измерения температуры в реальном масштабе времени, кроме того, объект измерения может быть расположен в труднодоступном месте. Применение портативных инфракрасных пирометров позволяет избежать этих проблем. Пирометры обеспечивают мгновенные точные измерения и предельно просты в эксплуатации. При этом отсутствует контакт с горячими поверхностями или движущимися объектами. Фактически не существует лучшей, недорогой аппаратуры для диагностики и выявления не-больших проблем до того, как они превратятся в серьезные.

Принцип действия пирометра (бесконтактного термометра) заключается в измерении силы теплового излучения, исходящего от объекта преимущественно в диапазонах видимого света и инфракрасного излучения.

Так как ассортимент предлагаемых как зарубежных, так и отечественных приборов весьма велик и, как правило, адаптирован под конкретные цели, то при выборе следует четко определиться, какой тип пирометра необходим для планируемых измерений. Стационарные пирометры дают весьма точные результаты и очень богаты функционально, однако они не предназначены для проведения измерений «на лету» и «в поле». Такие пирометры требуют калибровки и настройки, проверки на моделях АЧТ (абсолютно черное тело), и, несмотря на высокую надежность, точность и безошибочность измерений, а также удобство представления результатов, такой пирометр затруднительно всегда иметь под рукой. В условиях производства здорово выручают компактные переносные термометры, которые позволяют мгновенно получать значения температуры, причем на приемлемом уровне точности. К тому же при выборе между портативным и стационарным промышленным пирометром не последнюю роль играет цена, которая значительно выше у промышленных приборов.

Рассмотрим основные технические характеристики пирометров, на которые следует в первую очередь обращать внимание при выборе.

Первый момент — диапазон температур, величину которых планируется контролировать. Здесь в основном играет роль область применения и задачи по измерению температуры. Если необходимость использования пирометра ограничена, например, проведением энергетического аудита помещений и других измерений в условиях окружающей среды, то вполне удовлетворительным будет диапазон температур от -30 до +50 °С. Если пирометр предполагается использовать в целях контроля температуры на промышленных объектах, здесь уже нужны пирометры, способные работать с температурами, которые в несколько раз превышают указанные выше. Стоимость пирометра зависит в том числе и от данного параметра.

Второй момент, на который стоит обратить внимание, — разрешающая способность по температуре. Фактически это точность показаний пирометра, поскольку эта величина характеризует наименьшую разность температур, воспринимаемую пирометром. Обычно существует ряд второстепенных условий, влияющих на точность получаемых результатов, и степень их влияния может выражаться от сотых долей градуса до нескольких градусов.

Рис. 1. Пирометр Pro’sKit MT-4003

Рис. 2. Пирометр AXIOMET AX-7530

При выборе пирометра имеет смысл изучить такой параметр, как показатель визирования. От его величины во многом зависит цена прибора. Показатель визирования — это отношение диаметра пятна контроля прибора на объекте измерения к расстоянию до объекта и обозначается D:S. Пятно контроля — это минимальный диаметр излучающей площади, которая необходима для контроля температуры. Таким образом, пирометром с более высоким показателем визирования возможно измерение температуры объекта меньшего по своим геометрическим размерам. Для точного измерения температуры размеры объекта должны превышать размер пятна контроля прибора. Например, если пирометр имеет показатель визирования 1:100, это означает, что на расстоянии 10 м пятно контроля будет составлять всего 10 см, на расстоянии 2,5 м — 2,5 см.

Также обязательная характеристика для всех полупроводниковых приборов — диапазон рабочих температур. Этот параметр характеризует температурные условия, в которых прибор сможет функционировать нормально и изменения температуры не повлияют на метрологические качества прибора. В выборе пирометра с учетом этой характеристики следует учесть возможность калибровки прибора, предусматривающей возможность компенсации теплового удара, а также сохранение точности измерений во всем диапазоне рабочих температур при резкой смене температуры окружающей среды с субъективно теплой на холодную и наоборот.

Кроме всех вышеперечисленных характеристик имеет смысл обратить внимание на условия отображения информации. Как правило, любой современный пирометр снабжен ЖК-дисплеем, на котором отображаются данные измерения. Для непериодических замеров этого, как правило, бывает достаточно.

Что касается эргономики современных дистанционных инфракрасных термометров, то практически все они обладают удобной формой корпуса и управлением. Самая распространенная форма корпусов — пистолет. Такое исполнение прибора наиболее удобно для работы.

У большинства моделей пирометров кнопки меню и дисплей расположены к пользователю — это позволяет управлять им одним только пальцем руки. Курок в этих приборах исполняет роль кнопки «старт». В нажатом состоянии обычно производится сканирование поверхности, после отпускания срабатывает функция удержания данных на дисплее.

В таблице представлены технические характеристики недорогих бюджетных моделей пирометров четырех производителей: Pro’sKit, AXIOMET, MASTECH и HIOKI одного класса. Из особенностей рассмотренных моделей пирометров можно отметить следующие: пирометр Pro’sKit MT-4003 (рис. 1) не самый удобный в управлении. Все кнопки меню расположены на боковой части корпуса. Одной рукой будет сложно им управлять. Но поскольку на панель вынесены пять кнопок, а не три, как у HIOKI, единицу измерения температуры можно менять, не входя в меню. Еще одно немаловажное отличие Pro’sKit MT-4003 от HIOKI и AXIOMET заключается в отсутствии функции сохранения полученных измерений в память.

Таблица

Технические характеристики моделей недорогих бюджетных пирометров

Технические характеристики

HIOKI 3419-20

Pro’sKit MT-4003

AXIOMET AX-7530

MASTECH MS6530

Функция

Инфракрасный, дистанционный измеритель температуры

Инфракрасный, дистанционный измеритель температуры

Прецизионное бес­контактное измерение температуры. Измерение темпе­ратуры с помощью термопары К-типа (контактный метод)

Прецизионное бес­контактное измере­ние температуры

Лазер

IEC60825-1:1993 + A1:1997 + A2:2001 CLASS 2 LASER

Лазер 2-го класса без­опасности, мощность

Лазер 2-го класса безопасности, мощ­ность

Лазер 2-го класса безопасности, мощ­ность

Диапазон измеряемой температуры

от -35 до +500 °C

От -30 до +550 °C

От -32 до +480 °C

(пирометр), от -50 до +1370 °C (термопара К-типа)

От -20 до +537 °C

Точность

±10% значения ± 2 °C в диапазоне от -35 до -0,1 °C ± 2 % значения, или ± 2 °C в диапазоне от 0 до +500 °C

±(2 °C/4 F) в диапазоне от -30 до +100 °C ±2 % значения в диапазоне от 101 до +550 °C

± 5 °C в диапазоне от -32 до -20 °C ± 1,5% значения, ± 2°C в диапазоне от -20 до +200 °C ± 2,0 % значения ± 2 °C в диапазоне от 200 до +480 °C

± 2,5 °C в диапазоне от -20 до +50 °C ±1,5 % значения, ±1°C в диапазоне от 50 до +537°C

Дискрета измерения

0,1 °C (0,2 F)

0,5/1 °C (автоматиче­ский выбор), 1 F

0,1 °C (0,1 F)

0,1 °C (0,1 F)

Рабочее расстояние

От 60 см до 30 м

До 12 м

Спектральная характеристика

От 6 до 14 мкм

От 6 до 14 мкм

От 8 до 14 мкм

От 8 до 14 мкм

Визирование

Лазер 1 мВт (max), красный

Лазер 1 мВт (класс 2), красный

Лазер 1 мВт (класс 2), красный

Лазер 1 мВт (класс 2), красный

Показатель визирования

D:S = 8:1

D:S = 10:1

D:S = 13:1

D:S = 12:1

Компенсация теплового излучения

От 0,17 до 1,00 с дискретой 0,01

От 0,1 до 1,00 с дискретой 0,01

От 0,1 до 1,00 с дискретой 0,01

0,95

Время непрерывной работы

Приблизительно 55 ч. (марганцевая батарея). Приблизительно 80 ч. (щелочная батарея) с включенным лазером и отключенной подсветкой

Приблизительно 9 ч. при включенном лазере и подсветке

Дополнитель­ные функции

Отображение мах/min значения, функция сигнализации выхода температуры за пределы установленных границ,

подсветка дисплея, сохранение измерений в памяти (50 значений)

Отображение мах/min значения, функция сиг­нализации выхода тем­пературы за пределы установленных границ, подсветка дисплея

Отображение мах/min значения, функция сигнализации вы­хода температуры за пределы установлен­ных границ, подсветка дисплея, сохранение в память до 20 из­мерений

Отображение мах/min значения, под­светка дисплея

Габариты (Ш х В х Д)

46 х 172 х 118 мм

42 х 148 х 105 мм

56 х 175 х 118 мм

56 х 190 х 162 мм

Масса

220 г

157 г (с батареей)

290 г (с батареей)

267 г (с батареей)

Среди всех рассмотренных пирометров дисплей AXIOMET AX-7530 (рис. 2) отображает, пожалуй, больше всего параметров и установок одновременно. Коэффициент теплового излучения, текущая температура, единица измерения, индикатор лазерного прицела, индикатор заряда батареи плюс еще одна строчка с параметрами меню. На дне ручки пирометра есть разъем для подключения контактной термопары К-типа. Пирометр MASTECH MS 6530 (рис.3) отличается своими размерами. По сравнению с остальными моделями он более габаритен, ручка значительно длиннее, а дисплей намного больше. MASTECH MS 6530 обладает самой скромной функциональностью. ЭтПоказатель оптического разрешения самый большой в пирометре AXIOMET AX-7530 (13:1), а наименьший в HIOKI 3419-20 (рис. 4) (8:1).

В плане эргономики пирометры AXIOMET AX-7530 и HIOKI 3419-20, безусловно, лидируют. Приятные цвета корпуса, удобная форма и управление говорят в пользу этих моделей.

После проведения сравнения инфракрасных пирометров одного класса видно, что самый дорогой пирометр уступает по своим техническими показателями более дешевым моделям. Это можно объяснить классом прибора. Все-таки — японец! К его исполнению и функциональности нет никаких претензий.

В этом классе измерительных приборов сложно проследить зависимость стоимости от технических параметров. Ощутимая разница видна при сравнении их с профессиональными пирометрами, у которых оптическое разрешение достигает 50:1, а диапазон измерения доходит до 1250 °С и есть возможность синхронизации с ПК. Но их цена, соответственно, в разы превышает стоимость бюджетных моделей.

Инфракрасный термометр – прибор для умных людей. Часть 1

Температура является важнейшей физической величиной, для измерения которой придуманы многочисленные методы. В данной статье рассмотрен бесконтактный способ измерения температуры при помощи инфракрасного термометра MT4004.
С одной стороны, прибор очень прост в эксплуатации: наведи термометр на объект, нажми на кнопку – получишь результат, и твоя мечта осуществится! Так пела группа “Технология”.
Но что же ты не рад?

Все потому, что владелец термометра должен обладать некоторыми знаниями, чтобы правильно определять (но ещё лучше – сравнивать) температуру и умело использовать прибор. А термометр поможет уменьшить его расходы и даже спасти жизнь.
Об этих знаниях, практическом применении и тонкостях в работе с инфракрасным термометром рассказано в статье. Не обойдется без волнительного разбора прибора с изучением его внутренностей.
Можно ли проверить работоспособность пульта дистанционного управления при помощи термометра?
Считается, что пчелы и бабочки находят цветок по запаху или цвету. А как вам “тепловая” версия?
Как термометр поможет в уменьшении расхода топлива автомобиля?
Дуть или не дуть, чтобы остудить чай или суп (заявка на премию)?
Почему при кормлении ребенка берут кашу с края тарелки?
Как измерить среднюю температуру по больнице?
Измеряет ли пирометр температуру воздуха?
Как найти трубки (кабель) теплого пола?
Почему мы мёрзнем при ветре?
Змеи, кнопки и парадокс чайника
Если не брать в расчет различные виды производства с соблюдением технологических режимов, то абсолютное большинство людей точно знает лишь несколько значений температур: плавления льда, тела здорового человека, кипения воды.
Но даже эти знакомые всем цифры 0, 36,6 и 100 имеют отклонения. Температура тела в разных местах отличается, температура кипения воды зависит от атмосферного давления и т. д.
Температура всего остального нас волнует на уровне “жарко-холодно” и главное, чтобы она не выходила за привычные рамки.
Определить температуру на расстоянии человек может косвенным образом через органы слуха (зашипело), обоняния (сгорело) и зрения (убежало).
Но основной канал, это 16 000 тепловых рецепторов, разбросанных по всему телу, благодаря чему он чувствует тепловое излучение от Солнца, костра и батареи отопления.
Гремучие змеи имеют два рецептора, обладающих более высокой, чем у человека чувствительностью в инфракрасном диапазоне, что позволяет им охотиться в полной темноте.
Чтобы расширить свои возможности по дистанционному измерению температуры, человек изобрел инфракрасный термометр, одним из представителей которого является модель МТ4004, позволяющая производить быстрое измерение температуры поверхности.

Для проведения измерения необходимо нажать на кнопку включения “ON”, расположенную рядом с индикатором.
При кратковременном нажатии, термометр произведёт измерение и зафиксирует результат на 15 секунд – до отключения прибора, что удобно для определения температуры в труднодоступных местах. Перед отключением индикатор демонстрирует надпись “oFF”.
Если кнопку “ON” держать в нажатом состоянии, то термометр переходит в режим непрерывных измерений с частотой два раза в секунду. Выбранная скорость позволяет с легкостью считывать обновляемые показания.
Вообще у прибора две кнопки. Вторая – “C/F”, расположена с обратной стороны корпуса и скрыта в недрах прибора. Доступ к ней производится через отверстие в корпусе при помощи зубочистки или слегка заостренной спички. Кнопка позволяет отображать температуру в градусах Цельсия или Фаренгейта. Для переключения режима отображения включают термометр кратковременным нажатием кнопки “ON”, и затем нажимают кнопку “C/F”. В нашей стране градусы Фаренгейта практически не используются.
Рабочий диапазон термометра -27,4… +428 градусов Фаренгейта (-33… +220 Цельсия), поэтому фильм “451 градус по Фаренгейту” снять не удалось. Для поджигателей бумаги прибор пишет ”Hi”, что означает превышение верхнего предела измерений.
На южном полюсе прибор напишет “Lo”.
В двух испытаниях встречалась надпись “Er2” – когда термометр полоснула струя воздуха температурой 650 градусов Цельсия и когда он слишком близко приблизился к огню газовой комфорки. Возможно, это был перегрев датчика. Логично, что должна существовать и надпись “Er1”, но мне она не показалась (может оно и к лучшему?).
Чайник, это не только характеристика начинающего специалиста. Этим словом также именуют емкость для нагрева воды.
Измерим температуру кипящего чайника. К сожалению, струя свистящего пара на фотографии не наблюдается, но она есть (как тот суслик, которого не видно). Из показаний прибора и зависимости температуры кипения от высоты можно подумать, что измерения производятся на высоте 22,5 км. Но на самом деле, все происходит гораздо ниже, так как виден оператор без скафандра.

Если этот же чайник использовать в походах, то в зависимости от степени его закопчености, при кипении воды температура корпуса возрастет до 95…98 градусов.
Что изменилось кроме сажи, появившейся на стенках сосуда?
Парадоксальное на первый взгляд явление объясняется просто. При одной и той же температуре различные поверхности излучают по-разному: одни сильнее, другие – слабее.
Изучение инфракрасного излучения и сложности его измерения
Радиация, это излучение, которое может быть ионизирующим, тогда для его измерения применяются дозиметры, которые будут рассмотрены позже. В сегодняшнем рассказе под радиацией понимается тепловое (инфракрасное) излучение, которое измеряется радиационным пирометром.
Хотя человечество использовало тепловое излучение гораздо раньше его открытия в 1800 году, интенсивное изучение инфракрасного диапазона электромагнитных волн началось именно с этого момента благодаря английскому астроному Уильяму Гершелю.
В диапазоне температур от абсолютного нуля (не включительно) до планковской, все тела испускают излучение в инфракрасном диапазоне электромагнитных волн.
По закону Стефана – Больцмана, полная объёмная плотность равновесного излучения и полная испускательная способность абсолютно чёрного тела пропорциональна четвёртой степени температуры.
Значит, измерив мощность излучения можно определить температуру поверхности.
Но кроме того, что чувствительный элемент радиационного термометра не работает во всём диапазоне излучения, имеется ряд других но…
1. В законе Стефана – Больцмана имеется ввиду общее количество излучаемой энергии. Распределение энергии по спектру излучения описывается в формуле Планка, сформулированной в 1900 году. Даже при одной температуре, излучение состоит из множества излучений, имеющих разную длину волн, но при этом в спектре имеется единственный максимум.
2. Положение максимума в спектре зависит от температуры объекта и определяется законом смещения Вина. Пример: в видимом диапазоне при нагреве металла он становится красным, а при повышении температуры область излучения “уходит” в область высоких частот, изменяя цвет до синего, что используют в своей работе кузнецы и термисты.
Выражение “довести до белого каления” означает – очень сильно разогреть. И нежелательно это делать с людьми.
Для нас важно то, что с изменением температуры объекта, мощность теплового излучения на рабочей частоте датчика (приемника) термометра изменяется, и это необходимо учитывать при измерениях, особенно для приборов с широким диапазоном измерения.
3. По закону излучения Кирхгофа, отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.
Обратите внимание на слова “при данной температуре”. Для разных температур этот коэффициент различен – даже у одного тела.
Черное тело поглощает все падающее на него излучение, следовательно, его коэффициент излучения также равен единице.
С точки зрения термодинамики все остальные реальные тела являются не черными, а серыми (даже в том случае, если для нас они кажутся черными или невидимыми) – они имеют способность к поглощению меньше единицы, а следовательно, коэффициент их излучения также меньше единицы.
На начальном изучении теплового излучения различных материалов, данный факт был продемонстрирован в 1804 году при помощи заполненного горячей водой полого куба Лесли, у которого вертикальные стенки покрыты слоем различных материалов: золота, серебра, меди и сажи. Сторона сажи (близка к черному телу) имеет мощность излучения намного больше, чем трех других.
В чайнике, который был показан выше, нет золота и серебра, но суть процессов аналогичная.
Питер ван Мушенбрук (автор первого конденсатора под названием “лейденская банка”) в 1731 году изобрел оптический пирометр, в котором температура объекта определялась по цвету и яркости.
В данном обзоре рассматривается радиационный термометр, в котором измеряется мощность (интенсивность) теплового излучения в одной полосе спектра излучения, на основании чего вычисляется значение температуры.
Также существуют пирометры спектрального отношения (цветовые), имеющие несколько приемников, работающих в разных частях спектра. Их принцип работы основан на зависимости энергетической яркости от температуры сразу в нескольких областях спектра.
Первый переносной пирометр появился в 1967 году. С тех пор происходит улучшение массогабаритных характеристик, точности измерений и возможностей.
Прибор и его разбор
40 грамм – таков результат взвешивания термометра, габаритные размеры которого 86,5х19,4х14,8 мм сравнимы с моим безымянным пальцем и лишь немного превышают размер элемента питания формата АА.

С одной стороны, для такой малютки масса достаточно большая, но металлический корпус, кроме красоты, солидности и крепости имеет другую важную функцию – позволяет прибору максимально быстро набрать температуру окружающей среды, что улучшает точность измерения.
Миниатюрный размер корпуса позволяет производить измерения в таких местах, куда доступ другим пирометрам затруднён или невозможен.
У людей большая масса определяется качественным питанием. А что питает инфракрасный термометр?
Батарея питания состоит из двух щелочных (марганцево-цинковых) элементов типа LR44, аналоги: L1154, A76, G13, (типоразмер 357) с напряжением 1,5 вольт и ёмкостью 150 мА·час.
С серебряно-цинковыми элементами типа V357, SR44, имеющими рабочее напряжение 1,55 вольт и ёмкость до 200 мА·час работа инфракрасного термометра не проверялась.
В качестве эксперимента, были испытаны воздушно-цинковые элементы питания ZA675 (PR44) с напряжением 1,4 вольта и ёмкостью 650 мА·час! При проверке напряжения обнаружилось, что только что приобретенный элемент, годный до июля 2017 года, вырабатывает всего лишь 1,01 вольта. Первая мысль была вернуть их продавцу, но пришла вторая, которая помогла найти интересный фильм. Про низкое напряжения в нём явно не сказано, но после отклейки защитной пленки, препятствующей поступлению воздуха, напряжение стало увеличиваться и через пару-тройку минут возросло до 1,4 вольта, что является нормой для данного типа элементов питания — интересный факт, малоизвестный широкой публике.
Элементы устанавливаются в отсек, доступ к которому открывается после откручивания хромированной крышки.
Маркировка элементов питания и правильная установка показаны на картинке внутри отсека.

На внутренней стороне крышки имеется серийный номер изделия. Номерная часть наклеена не на основную деталь прибора, но её наличие придает изделию солидность.

На корпусе прибора имеется обозначение “CE”, что подтверждает соответствие продукции европейским стандартам безопасности для человека, имущества и окружающей среды.
Изучение внутренностей корпуса приводит к мысли, что плату прибора можно извлечь только через батарейный отсек.
Попытка зацепить пластмассовую обойму, окружающую элемент питания Г-образной проволокой, не увенчалась успехом. Причина в том, что защитное стекло, закрывающее ЖК-индикатор прибора, установлено вровень с металлическим корпусом и препятствует началу движения.

На этом пластмассовом “стеклышке” видны боковые фиксаторы, поэтому возникла идея, что для разборки необходимо сковырнуть его наверх. Попытка реализовывалась при помощи тонкого канцелярского лезвия, затем (при появлении щели) обычного ножа, и в конце использовалась тонкая отвертка.
Результат операции: повреждено два лезвия канцелярского ножа (не жалко), сломан один фиксатор на стекле (жалко), на стекле появились царапинки (сильно жалко), термометр немножко потерял свой товарный вид (огорчительно). Именно поэтому разбор устройства желательно делать по окончанию всех экспериментов с фотографированием.
После того, как отвертка проникла между защитным стеклом и индикатором, противоположная стенка защитного стекла “провалилась” внутрь металлического корпуса… Стало понятно, что конструктором данного изделия использовано решение, которое заставляет им восхищаться (конструктором).
Разборка производится не просто, а гениально просто! Никаких приспособление не нужно, фиксация происходит за счёт пружинящих свойств пластмассовой гильзы и токосъёмника, приподнимающих защитное стекло в вырез смотрового окна.
Чтобы разобрать термометр МТ4004 необходимо:
1. извлечь элементы питания;
2. опустить резиновый толкатель кнопки ниже корпуса для облегчения последующего выталкивания;
3. надавить пальцем на защитное стекло индикатора так, чтобы оно опустилось ниже корпуса и вытолкнуть внутреннюю часть прибора через батарейный отсек.
После извлечения пластмассовой гильзы имеем следующую картинку, где в том числе видны воздушно-цинковые элементы питания с отверстиями для поступления воздуха, а также стеклышко с отломанным ушком.

Обратная сторона гильзы.
Контроллер выполнен в безвыводном исполнении и залит компаундом.
Плата покрыта лаком, нанесена бумажная маркировка на контроллер, а также обозначение маркером на плате.
Помимо мелочевки, из опознаваемых деталей имеются:
93C46V1 – микросхема последовательного EEPROM с организацией 64 регистра по 16 бит или 128 регистров по 8 бит, общая ёмкость 1 024 бит. Напряжение питания от 1,8 до 5,5 вольт. Программа в такой объём поместиться не может. Скорее всего, в ней записаны константы для калибровки конкретного датчика.
Прямоугольный конденсатор сравнительно большого размера с обозначением 104J63, что расшифровывается как 0,1мкФх63В.
Кнопка включения “ON”.
Один винт отсутствует, так как в обойме не предусмотрено место для его крепления.

Судя по внешнему виду, в качестве чувствительного элемента, в термометре использован аналоговый датчик, похожий на TPS333, работающий в диапазоне от 5 до 14 мкм (µm).

На другой стороне платы расположены: ЖК-индикатор, кварц на 32 768 Гц и кнопка “C/F” (её корпус выше. чем у кнопки “ON”).

К качеству пайки, сборке и монтажу претензий не имеется, всё выполнено на высоком уровне.
Во второй части ожидаются интересные эксперименты с использованием данного термометра.
Фотоальбом “Инфракрасный термометр” с многочисленными фотографиями, в том числе, и не вошедшими в обзор инфракрасного термометра.
на страницу, где можно познакомиться с техническими характеристиками, различными способами применения и приобрести инфракрасный термометр МТ4004.
Продолжение статьи: «Дуть или не дуть, и другие опыты с инфракрасным термометром».

Пирометры — что это? Статья о приборах дистанционного измерения температуры — пирометрах.

История развития

Бесконтактные дистанционные измерители температуры (пирометры) производятся уже много лет. Развитие в последнее время элементной базы позволило резко улучшить потребительские характеристики практически всех измерительных приборов, в том числе и пирометров. На рынок были выпущены не дорогие бытовые пирометры серии DT. Они надёжны и просты в эксплуатации, а цена младших моделей менее 1000 рублей! Небольшой вес, автономное питание, быстрота и точность работы — вот основные отличительные черты серии DT.

Пирометры на Gradusniki.ru — купить.

Зачем нужен пирометр?

Если вкратце, то можно перечислить несколько основных применений: для измерения температуры поверхности объектов, где контроль температуры затруднён вследствие высоких температур, опасности поражения электрическим током, температурной неоднородностью объекта и рядом других причин. Кроме этого, это очень быстрый способ узнать температуру — типовое время измерения температуры менее 1 секунды! В ряде случаев проще, легче и дешевле использовать дистанционные измерители температуры (пирометры).

В быту есть множество применений для пирометра: можно определять температуру в холодильнике или морозильнике, в плите, температуру батарей, подводящих магистралей холодного и горячего теплоснабжения, температуру бытовых приборов, а также электрических выключателей (их повышенная температура свидетельствует о неисправности), температуру в труднодоступных местах. А также температуру приготовленной еды, воды в кастрюле и чайнике, или в ванной. Может пригодиться пирометр и путешествиях. Вы можете быстро измерить температуру воды в море или озере, температуру песка на пляже, температуру на поверхности вулкана, вытекшей лавы или вырывающихся газов (Италия — вулкан Этна, Греция — о.Ниссирос и т.д.).

Что и где измеряет пирометр?

Он измеряет среднюю температуру поверхности объекта. По форме пятно измерения — это эллипс или окружность. Чем дальше от пирометра находится объект измерения, тем больше площадь окружности, среднюю температуру которой показывает пирометр. Представьте себе конус, на острие которого стоит пирометр, а в основании — объект измерения. Встроенный в прибор лазерный указатель помогает «нацелить» прибор в центр окружности измерения.

Технические характеристики — расшифровка непонятных терминов

  1. Показатель визирования пирометра — это отношение расстояния до объекта к размеру измеряемого участка его поверхности. Обычно в пирометрах серии DT параметр D:S равен 8:1. Это означает, что на расстоянии в 15 см диаметр пятна измерения составит около 2 см, на расстоянии 50 см — примерно 6,3 см, на расстоянии 1 метра до объекта — 12,5 см и т.д.;
  2. Диапазон рабочих расстояний у пирометра — расстояние до объекта измерения, на котором пирометр показывает температуру с заявленной точностью. Обычно в пирометрах серии DT это расстояние от 0,15 до 5 м. При бОльших или меньших расстояниях пирометр также работоспособен, но точность измерения температуры при этом падает;
  3. Спектральный диапазон прибора: 8 — 14 мкм. Это длина волны теплового излучения объекта измерения в инфракрасном, невидимом глазом диапазоне. Этот диапазон выбран не случайно. Благодаря специальному оптическому фильтру на входе прибора, корорый пропускает только этот диапазон, а остальное излучение от объекта задерживает, им можно пользоваться при солнечном освещении — т.н. «солнечно слепой» прибор;
  4. Разрешающая способность по температуре — это способность пирометра различать температуру соседних участков объекта измерения. Обычно в пирометрах серии DT это 0,1 °C;
  5. Точность. Не путать с разрешающей способностью. Это абсолютное (в градусах) или относительное (в процентах) отклонение измеренной температуры от истинной температуры объекта. Чем ближе температура к краям диапазона, тем ниже точность измерения. Обычно для пирометров это 1-2 градуса или порядка 2%;
  6. Излучательная способность. Одноканальные инфракрасные термометры и пирометры (яркостные, частичного и полного излучения) определяют температуру по величине принятого каналом сигнала. Энергия, которую испускает нагретое тело, зависит не только от температуры этого тела, но и от материала, из которого оно сделано. Различные материалы излучают по-разному, и это учитывается коэффициентом, называемым излучательной способностью. Излучательная способность показывает, какую часть от излучения, испускаемого идеальным излучателем (абсолютно черным телом, АЧТ), находящимся при равной с нашим объектом температуре, излучает наш объект. Значение излучательной способности лежит в пределах от 0,01…0,02 (у полированных металлов) до 0,9…0,98 (дерево, строительные краски, поверхность земли, человеческая кожа и т.д.). В пирометрах серии DT это значение фиксированно и составляет 0,95.
  7. Ресурс работы от автономного источника питания. Приборы серии DT чрезвычайно экономичны. Они работают от элемента напряжением 9V и потребляют небольшой ток только в режиме измерения и подсветки ЖК дисплея. Автоматически выключаются в режиме простоя, в котором потребляют ток, сравнимый с током саморазряда батареи. Поэтому ресурс работы напрямую зависит от количества измерений. Если пользоваться прибором периодически, с перерывами, то батареи может хватить на срок около года или даже более. Прибор не имеет движущихся частей и в идеале будет безотказно работать в течении многих лет — вам нужно будет только изредка заменять батарею питания;
  8. Усреднённые измерения необходимы, когда требуется более высокая точность измерений. Для этого выполняют несколько (обычно от 3до 7) измерений подряд и находят среднее арифметическое.

Ошибки измерения пирометра — как бороться?

Если Вы всерьёз озабочены точностью измерений, но получаете результаты, которые отличаются от действительныой температуры объектов, прочтите текст ниже.

Приборы серии DT принадлежат к классу яркостных пирометров, т.е. являются одноканальными приборами. Они работают в одном диапазоне длин волн и вследствие этого имеют ряд особенностей, корорые необходимо учитывать при проведении измерений:

  • в первую очередь к ним относится необходимость знать излучательную способность измеряемого объекта – коэффициент, показывающий, какую часть от излучения находящегося в тепловым равновесии с измеряемым объектом абсолютно черного тела испускает измеряемый объект;
  • далее, при измерении такими приборами необходимо, чтобы измеряемый участок полностью перекрывал поле зрения пирометра на выбранном расстоянии, ибо невыполнение этого требования ведет к неконтролируемому занижению результата измерений, иногда на порядок превышающему заявленную инструментальную погрешность;
  • в связи с несовершенством оптики ИК-прозрачных материалов, приборы характеризуются небольшой зависимостью показаний от расстояния до объекта, а также от излучения прямо не попадающих в поле зрения пирометра областей измеряемого объекта (расположенные рядом объекты, температура которых сильно отличается от температуры объекта измерения).

Учёт вышеприведённых факторов и усреднённые измерения позволят Вам с помощью пирометра быстро и точно определить температуру интересующих Вас объектов.

Пирометры на Gradusniki.ru — купить.

Инструкция к GM900 инфракрасный бесконтактный термометр (пирометр)

Введение:

Инфракрасный термометр (пирометр) модель GM900 предназначен для измерения температуры поверхности бесконтактным способом.

Принцип работы:

Инфракрасные бесконтактные термометры способны измерять поверхностную температуру объектов. Оптический датчик прибора улавливает излучаемую, отраженную и передаваемую энергию от объекта измерения и фокусирует ее на датчик. Полученные данные с датчика преобразуются электроникой прибора в показания температуры, которые отображаются на дисплее. Для упрощения и уточнения нацеливания прибора на объект используется лазерный указатель

При работе с прибором придерживайтесь следующих предосторожностей:

  • Не подвергайте прибор воздействию электромагнитного излучения от дуговой сварки, индукционных нагревателей и других объектов;
  • Не подвергайте прибор резкому изменению температуры окружающей среды;
  • Не оставляйте прибор у объектов с высокими температурами;
  • Для очистки линз прибора используйте сжатый воздух. Не используйте для чистки растворители. Не погружайте прибор в воду.

ВНИМАНИЕ! Прибор оснащен лазером, класс 2. Никогда не направляйте лазерный луч в глаза – это может привести к нарушению зрения!

Устройство прибора:

1 — Триггер включения прибора и режима измерения. При первом нажатии / включении прибора, сначала отображается версия прошивки (ПО) прибора на 1 секунду. При последующих нажатиях и удержании загорается индикатор на дисплее и проводятся измерения, после чего при отпускании кнопки прибор отображает температуру объекта и автоматически переходит в режим удержания результата (загорается индикатор). Без удержания триггера прибор выключается через 30 секунд бездействия.

2 — Кнопка включения лазерного целеуказателя, а также подсветки.

3-6 – при нажатии кнопки 3 индикатор режима H (см. ниже) будет поочерёдно отображать MAX-MIN-DIF-AVG-HAL-LAL-STO, вы можете выбрать режим нажатием кнопки 4 один раз.

  • MAX – измерение максимальной показателя температуры в процессе измерения
  • MIN — измерение минимальной показателя температуры в процессе измерения
  • DIF – вычислить разницу между двумя последними замерами
  • AVG – вычислить среднюю температуру
  • HAL – издавать сигнал при определённой пользователем максимальной температуре. При выборе этого режима Вы можете выбрать максимальную температуру кнопкой 5. Для фиксации режима нажмите кнопку 4. При достижении выставленной температуры прибор будет подавать частый звуковой сигнал.
  • LAL – аналогично пункту «e» только для минимальной установленной температуры
  • STO – сохранение данных в памяти прибора. Если пирометр находится в режиме STO то сохранять результаты можно с помощью следующих действий. Измерьте температуру нужного объекта как описано в пункте 1, затем нажмите на кнопку 6, отображаемый результат зафиксируется в одной из 12 ячеек памяти прибора, в этот момент отобразится индикатор I в виде закрытого замка. Повторяйте действия для заполнения всех ячеек памяти. Вы можете просматривать сохранённые в ячейках результаты, нажимая кнопку 6 в обычном режиме. Для очистки памяти удерживайте кнопку 6 на протяжении двух секунд.
  • EMS – установка коэффициента излучения. (Только для подготовленных специалистов!) нажимайте кнопку 5 для выбора уровня излучения, для фиксации значения и перехода в нормальный режим нажмите кнопку 4 один раз.

7 – Жидкокристаллический дисплей (ЖКД)

8 – Крышка элемента питания.

Индикация ЖК-дисплея:

  • A – значение температуры (результат)
  • B – единица измерения
  • C – индикация включенного лазерного указателя
  • D – индикация включенной подсветки
  • E – индикация заряда батареи
  • F – индикация сканирования
  • G – индикация удержания результата
  • H – индикация режима
  • I – индикация сохранения / чтения данных
  • J – сигнализатор низкой температуры
  • K – сигнализатор высокой температуры

Работа с пирометром. Проведение измерений:

  1. Для проведения измерения направьте прибор на объект и зажмите триггер «1». Объект измерения должен быть больше чем измеряемая область, рассчитанная по отношению 12:1. Чем дальше находится объект измерения, тем больше будет измеряемая область.
  2. Если необходима повышенная точность измерения, убедитесь что размеры объекта не менее чем в 2 раза больше измеряемой области.
  3. Для установки другого коэффициента оптического излучения нажимайте кнопку 3 «MODE» до тех пор, пока на ЖК-дисплее не появится символ «EMS». Далее при помощи кнопок 4 (стрелки вверх-вниз) установите требуемое значение коэффициента, затем нажмите кнопку 4 «SET».

Приблизительные коэффициенты излучательной способности для разных материалов:

Материал Коэффициент Материал Коэффициент
Алюминий 0.30 Железо 0.70
Асбест 0.95 Свинец 0.50
Асфальт 0.95 Известняк 0.98
Базальт 0.70 Масло 0.94
Латунь 0.50 Краска 0.93
Кирпич 0.90 Бумага 0.95
Карбон 0.85 Пластик 0.95
Керамика 0.95 Каучук 0.95
Бетон 0.95 Песок 0.90
Медь 0.95 Кожа 0.98
Грязь 0.94 Снег 0.90
Замороженная еда 0.90 Сталь 0.80
Горячая еда 0.93 Ткань 0.94
Стекло (плоское) 0.85 Вода 0.93
Лед 0.98 Шерсть 0.94

FILED UNDER : Справочник

Submit a Comment

Must be required * marked fields.

:*
:*