admin / 25.11.2018

Назовите основные конструктивные элементы молниеотводов

Типы и устройство молниеотводов

Молниеотвод — устройство, устанавливаемое на зданиях и сооружениях и служащее для защиты от удара молнии. В быту также употребляется некорректное, но более благозвучное «громоотвод».

Во время грозы появляются большие индуцированные заряды, и у поверхности Земли возникает сильное электрическое поле. Напряжённость поля особенно велика возле острых проводников, и поэтому на конце молниеотвода зажигается коронный разряд.

Вследствие этого индуцированные заряды не могут накапливаться на здании и молнии не происходит. В тех же случаях, когда молния всё же возникает (такие случаи очень редки), она ударяет в молниеотвод и заряды уходят в Землю, не причиняя разрушений.

Здания и сооружения защищают от прямых ударов молнии различными по конструкции молниеотводами. Но любой из молниеотводов включает в себя четыре основные части: молниеприемник, непосредственно воспринимающий удар молнии; токоотвод, соединяющий молниеприемник с заземлителем; заземлитель, через который ток молнии стекает в землю; несущую часть (опору или опоры), предназначенную для закрепления молниеприемника и токоотвода.

В зависимости от конструкции молниеприемника различают молниеотводы:

— стержневые

— тросовые

— сетчатые

— комбинированные.

По числу совместно действующих молниеприемников их делят на:

— одиночные

— двойные

— многократные.

Кроме того, по месту расположения молниеотводы бывают:

— отдельно стоящие

— изолированные

— не изолированные

Защитное действие молниеотвода основано на свойстве молнии поражать наиболее высокие и хорошо заземленные металлические сооружения. Благодаря этому свойству более низкое по высоте защищаемое здание практически не поражается молнией, если оно входит в зону защиты молниеотвода. Зоной защиты молниеотвода называется часть пространства, примыкающая к нему и с достаточной степенью надежности (не менее 95%) обеспечивающая защиту сооружений от прямых ударов молнии.

Наиболее часто для защиты зданий и сооружений применяют стержневые молниеотводы.

Молниеприемник стержневого молниеотвода представляет собой вертикально расположенный стальной стержень любого профиля длиной 2… 15 м и площадью поперечного сечения не менее 100 мм2, укрепленный на опоре, расположенной, как правило, не ближе 5 м от защищаемого объекта. Молниеприемник соединяют с заземлителем токоотводом, выполненным из стальной проволоки диаметром не менее 6 мм, а в случае прокладки токоотвода в земле — не менее 10 мм. При устройстве молниеприемников непосредственно на крыше здания выполняют как минимум два токоотвода, а при ширине крыши более 12 м — четыре. Если длина защищаемого объекта более 20 м, то на каждые последующие 20 м длины требуется устанавливать дополнительные токоотводы; при ширине здания до 12 м — на обеих сторонах здания. Все соединения (молниеприемник — токоотвод, токоотвод — заземлитель) следует сваривать. В качестве стержневых молниеотводов необходимо максимально использовать существующие вблизи защищаемого объекта высокие сооружения: водонапорные башни, вытяжные трубы и т.п. Деревья, растущие на расстоянии не более 5 м от зданий III…V степеней огнестойкости, также можно использовать в качестве опоры молниеотвода, если на стене здания напротив дерева на всю высоту стены проложить токоотвод, приварив его к заземлителю молниеотвода.

Тросовые молниеотводы чаще всего применяют для защиты зданий большой длины и высоковольтных линий. Эти молниеотводы изготовляют в виде горизонтальных тросов, закрепленных на опорах, по каждой из которых прокладывают токоотвод. Молниеприемники тросовых молниеотводов выполняют из стального многопроволочного оцинкованного троса сечением не менее 35 мм2. Следует отметить, что стержневые и тросовые молниеотводы обеспечивают одинаковую степень надежности защиты.

В качестве молниеприемников можно использовать металлическую крышу, заземленную по углам и по периметру не реже чем через каждые 25 м, или наложенную на неметаллическую крышу сетку из стальной проволоки диаметром не менее 6 мм, имеющую площадь ячеек до 150мм2, с узлами, закрепленными сваркой, и заземленную так же, как металлическая крыша. К сетке или токопроводящей кровле присоединяют металлические колпаки над дымовыми и вентиляционными трубами, а в случае отсутствия колпаков — специально наложенные на трубы проволочные кольца .

Заземлители МЗС

МЗС нужен, чтобы отвести в землю ток молнии после ее удара в молниеприемник. Но для этой цели нет нужды в специальном контуре заземления. Току молнии некуда деваться. Он безо всякого заземлителя растечется в грунте после удара молнии в поверхность земли или, например, в дерево.

Может быть при низком сопротивлении заземления молниеотвод эффективнее притягивает молнию? Теория и эксперимент дают здесь отрицательный ответ. Для притяжения молнии важен рост плазменного канала от вершины объекта, так называемого встречного лидера. Развитие лидера сопровождается током через сопротивление заземления молниеотвода и на нем теряется напряжение. Однако потеря очень мала, потому что этот ток вряд ли превышает 10 — 20 А. Даже на сопротивлении заземления Rз = 000 Ом потеря напряжения составит 10 — 20 кВ — величина пренебрежимо малая по сравнению с потенциалом 20 — 100 кВ, который несет к земле канал молнии. Итак, рассмотренные причины отпадают. Остается одно — безопасность процесса растекания тока молнии в земле. При ударе в молниеотвод ток молнии может превысить 100 кА. Даже в случае качественного заземления молниеотвода с сопротивлением заземления Rз ~ 10 Ом речь пойдет о напряжении порядка 1000 кВ. Столь сильный подброс напряжения становится причиной больших напряжений. Прикосновения к металлоконструкциям молниеотвода, на достаточно большом расстоянии от молниеотвода возникают опасные шаговые напряжения, между зеземлителем и подземными коммуникациями (например, кабелями цепей управления) действуют высокие напряжения, достаточные для искрового пробоя грунта и ввода в эти коммуникации значительной доли тока молнии. При очень высоком напряжении возможен даже искровой пробой по воздуху на металлоконструкции объекта, которые этот молниеотвод призван защищать .

>8.4. Молниеотводы

Средством защиты от прямых ударов молнии служит молниеотвод – устройство, рассчитанное на непосредственный контакт с каналом молнии и отводящее ее ток в землю.

Конструктивное выполнение молниеотводов

Здания и сооружения от прямых ударов защищают молниеотводами, каждый из которых конструктивно состоит из молниеприемника, непосредственно воспринимающего удар молнии, токоотвода, соединяющего молниеприемник с заземлителем, и заземлителя, через который ток молнии стекает в землю. Вертикальная конструкция (столб, мачта) или часть сооружения, предназначенная для закрепления молниеприемника и токоотвода, называется опорой молниеотвода.

Опоры стержневых и тросовых молниеотводов, как отдельно стоящих, так и устанавливаемых на защищаемом объекте, могут быть деревянными, металлическими и железобетонными (рис. 8.9).

Деревянная опора обычно состоит из основной стойки и пасынков, выполненных из дерева или железобетона (последние предпочтительнее). Деревянные части, особенно подземные, антисептируют. Высота такого молниеотвода редко превышает 25 м. В землю опора зарывается на 0,1–0,2 ее полной высоты в зависимости от грунта. Для опор используют древесину хвойной породы (сосна, лиственница, ель, пихта). Диаметр бревна в верхнем срубе должен быть не менее 100 мм.

Опоры высотой более 8-10 м выполняют на одном или двух пасынках (рис. 8.9, а), высота которых зависит от высоты молниеотвода. Для увеличения срока службы деревянных опор рекомендуется применять железобетонные пасынки, особенно в грунтах, где процесс гниения наиболее интенсивен (в суглинках). Железобетонные пасынки изготовляют из бетона марки не ниже М200, армированного круглой сталью марки Ст 3 или Ст 5. В поперечнике пасынки могут быть прямоугольного двутаврового, круглого и других сечений.

Рис. 8.9. Конструкции стержневых молниеотводов и молниеприемников:

а– на деревянной опоре;б– металлический решетчатый типа М-25;в– на железобетонной опоре;г– молниеприемник из металлических труб, установленных на крыше;1– опора (стойка);2– молниеприемник;3– подножник;4– токопровод (спуск);5– фланец;6– оттяжка

Металлическую опору для молниеотвода высотой 20-75 м (рис. 8.9, б) чаще всего выполняют в виде жесткой решетчатой конструкции. Ее устанавливают на четырех железобетонных подножниках, наверху к ней приваривают молниеприемник и предохраняют от коррозии регулярной окраской. Такой молниеотвод не требует специального токоотвода, так как сам хорошо проводит ток.

Железобетонные опоры могут быть различной формы (рис. 8.9, в), арматура в них частично или полностью предварительно напряженная. Бетон может быть вибрированным или центрифугированным. На вершине опоры устанавливают молниеприемник и соединяют с токоотводом, который прокладывают по опоре. В некоторых случаях молниеприемник соединяют с арматурой, используемой в качестве токоотвода. Но именно эти места оказываются нередко ненадежными, так как требуется либо вывод части арматуры наружу, либо пропуск в нее соединительных проводников. На этих участках постепенно начинается разрушение, особенно в прибрежных районах морей. Железобетонные опоры экономически более выгодны, они проще в эксплуатации и долговечны. Опоры стержневых молниеотводов должны быть рассчитаны на механическую прочность как свободно стоящие конструкции, а опоры тросовых молниеотводов – с учетом натяжения троса и действия на него ветровой и гололедной нагрузки.

Молниеотводы, устанавливаемые на сооружении, делятся на настенные и кровельные. Первые применяют чаще, их молниеприемники изготавливают из трубы или угловой стали и закрепляют посредством скоб, хомутов или кронштейнов. Молниеприемники кровельные (рис. 8.9, г) чаще всего выполняют из труб разного диаметра и снабжают фланцами для крепления к крыше при помощи болтов. Дополнительная устойчивость достигается посредством оттяжек из полосовой или угловой стали. Высота таких молниеприемников колеблется от 5 до 10 м. Опорами стержневых молниеотводов могут служить стволы деревьев, растущих вблизи защищаемых зданий и сооружений. При этом если дерево находится на расстоянии менее 5 м от зданий и сооружений III, IV и V степени огнестойкости (II и III категория молниезащиты), то необходимо по стене защищаемого здания против ствола проложить токоотвод и присоединить под землей к заземлителю или же от молниеприемника токоотвод перебросить на другое дерево, на отдельную стойку, отстоящие от здания более чем на 5 м. Если дерево невысокое, то на него устанавливают шест с молниеприемником, это удешевляет молниезащиту. Кроме того, деревья создают дополнительное экранирование от заряженного облака.

Для тросовых молниеотводов можно использовать те же опоры, но требуется иногда повышать их устойчивость оттяжками или подкосами. Выбор того или иного материала опор обуславливается в основном необходимой высотой молниеотводов, расчетными механическими нагрузками, а также экономическими соображениями. Следует также учитывать их сочетание с архитектурой защищаемого объекта, климатическими условиями.

Молниеприемники стержневые, тросовые и в виде сетки непосредственно воспринимают прямой удар молнии и должны выдерживать ее термическое и динамическое воздействия, быть надежными в эксплуатации.

Стержневые молниеприемники изготовляются из покрытой антикоррозийной защитой (оцинкование, лужение, покраска) круглой и угловой стали или из некондиционных водогазопроводных труб. Конец трубы сплющивают или надежно закрывают металлической пробкой. Наименьшее сечение молниеприемника должно быть 100 мм2 (это позволяет выдержать термические и динамические воздействия тока молнии), а длина не менее 200 мм.

В качестве молниеприемников можно использовать дымовые, выхлопные и другие металлические трубы объекта, дефлекторы (если они не выбрасывают горючие пары и газы), кровлю и другие металлические элементы сооружений.

Применяют молниеприемники и в виде сетки, сваренной из круглой стали диаметром 6-8 мм или полосовой стали сечением не менее 48 мм2, уложенных на кровлю под гидро- или теплоизоляцию (если они несгораемые). Это не затруднит отток воды с кровли и очистку от снега. Шаг ячейки берут 66 м для зданий II категории, а для зданий III — 1212 м.

Однако укладка сеток рациональна лишь в зданиях с горизонтальными крышами, где равновероятно поражение молнией любого их участка. При больших уклонах крыши наиболее вероятны удары молнии вблизи ее конька, и в этих участках укладка сетки по всей поверхности кровли приведет к неоправданным затратам металла. В этом случае более экономичен вариант установки стержневых или тросовых молниеприемников, в зону защиты которых входит весь объект. По этой причине укладка молниеприемной сетки рекомендуется на неметаллических кровлях с уклоном не более 1:8.

Иногда возвышающиеся элементы кровли снабжают молниеприемниками, соединенными с сеткой посредством сварки. На деревьях молниеприемником может служить выступающий конец токоотвода в виде петли на участке до 400 мм от верхней точки. Тросовый молниеприемник выполняют из стального многопроволочного и только оцинкованного троса диаметром до 7 мм (сечение не менее 35 мм2).

Токоотводы молниеотводов применяют для соединения молниеприемников с заземлителями из стали любого профиля. Их рассчитывают на пропускание полного тока молнии без нарушений и существенного перегрева. Они должны быть оцинкованы, пролужены или окрашены для предупреждения коррозии. Не рекомендуется применять многопроволочный стальной трос, если у него не оцинкована каждая нить. Наименьшее сечение токоотводов, выполненных из угловой и полосовой стали и расположенных вне сооружения на воздухе, равно 48 мм2, для расположенных внутри – 24 мм2, а круглые токоотводы должны иметь наименьший диаметр 6 мм. Токоотводами могут служить арматура железобетонных конструкций, направляющие лифтов, пожарные лестницы, водопроводные, водосточные и канализационные трубы, колонны, стенки резервуаров, электрически надежно связанные по всей длине.

Соединения токоотводов, специальных и естественных, должны быть сварными (внахлест). Количество их необходимо резко ограничить. Болтовые соединения допускают только для объектов сIII категорией устройства молниезащиты и тогда их не окрашивают, а лудят. С заземлителями токоотводы соединяют только сваркой, и площадь контакта во всех случаях не менее двух площадей сечения деталей, а длина – около шести диаметров проволоки или двойной ширины полосы или полки уголка. Если токоотводы присоединяют к отдельным заземлителям и они электрически связаны друг с другом, то на высоте около 1,5 м от поверхности земли устанавливают надежный болтовой зажим, позволяющий отсоединить токоотвод для контроля заземлителя (рис. 8.10). Токоотводы от молниеприемников прокладывают кратчайшим путем к заземлителю. От входов в здания их нужно располагать на таком расстоянии, чтобы с ними не могли соприкасаться люди. Необходимо избегать острых углов и тем более петель в токоотводе, так как значительные электродинамические усилия при больших токах молнии могут разорвать его на этих участках или вызвать искровое перекрытие между ближайшими точками петли. Металлическая кровля, короба и трубы могут быть соединены с токоотводами болтовыми зажимами (рис. 8.11).

Заземляющие устройства являются важнейшим элементом в комплексе средств обеспечения защиты объектов от прямого удара молнии, заноса высоких потенциалов по коммуникациям и электростатической индукции. Основной частью их являются собственно заземлители, находящиеся в достаточно хорошо проводящей среде.

Заземлитель молниезащиты – один или несколько заглубленных в землю проводников, предназначенных для отвода в землю токов молнии или ограничения перенапряжений, возникающих на металлических корпусах, коммуникациях при близких разрядах молнии. Они бывают одиночными (простыми) или сложными (комбинированными). К первым относятся трубы, электроды из круглой, полосовой, угловой и листовой стали, железобетонные подножки и сваи, а сложные образуются из комбинаций простых. Одиночные делятся на сосредоточенные и протяженные. У первых потенциал практически по длине не изменяется, у вторых потенциалы начала и конца отличаются друг от друга вследствие большой длины электродов, малого их сечения, высокого удельного сопротивления материалов или высокой удельной проводимости грунта.

Рис. 8.11. Зажим для присоединения плоского (а) и круглого (б) токоотводов к металлической кровле:

1– токоотвод;2– кровля;3– свинцовая прокладка;4– стальная пластина;5– пластина с приваренным токоотводом

Еще различают искусственные и естественные заземлители.

Искусственные заземлители – специально проложенные в земле контуры из полосовой или круглой стали, сосредоточенные конструкции, состоящие из вертикальных и горизонтальных проводников.

Естественные заземлители – заглубленные в землю металлические и железобетонные конструкции зданий и сооружений.

Заземлители могут быть поверхностными и углубленными. Последние обычно изготовляют из круглой или полосовой стали и укладывают в глубокие котлованы или траншеи, чаще всего по периметру фундамента, если последний не может быть использован в качестве естественного заземлителя. Наконец, существуют вертикальные заземлители (обычно стержни из круглой или угловой стали и трубы, железобетонные подножники и сваи, забиваемые в землю, реже – стальные круглые стержни, ввинченные в грунт) и горизонтальные, изготовленные из любой профильной стали, закапываемые неглубоко в грунт.

Вертикальные заземлители более эффективны, так как большая их часть располагается во влажных и менее промерзающих слоях почвы. Их длину берут от 2 до 5 м и применяют в глинистых или смешанных грунтах с удельным сопротивлением  менее 300 Омм и при сравнительно высоком уровне грунтовых вод. Если же верхние слои почвы обладают высоким  и этот уровень низок, то длину электродов увеличивают до 4-6 м. Наиболее употребительны и удобны заземлители из круглой стали диаметром 12-30 мм, угловой с шириной полок 40-50 мм, толщиной не менее 4 мм и трубы (чаще всего некондиционные или непригодные к дальнейшему использованию по назначению) с наружным диаметром 25-60 мм и толщиной стенки не менее 3,5 мм. Верхний конец вертикальных заземлителей располагают от поверхности земли на 0,5-1 м. На этом уровне высыхание или промерзание грунта затруднено.

Горизонтальные заземлители используют в грунтах с длительно влажными верхними слоями, где трудно забивать вертикальные электроды (гористая местность, районы вечной мерзлоты). Если грунт обладает плохой проводимостью (песок), то траншею для горизонтальных заземлителей заполняют другим грунтом, удобренным солями или их растворами. Для электродов берут преимущественно полосовую сталь сечением не менее 160 мм2 (404 мм) и реже круглую сталь эквивалентного сечения. Электроды укладывают на глубину 0,6-0,8 м в виде одного или нескольких симметричных лучей, длина каждого из них, считая от токоотвода, обычно не превышает 25-30 м. Чем больше удельное сопротивление грунта, тем больше длина луча и их число. Электроды любого типа соединяют между собой и с токоотводами только сваркой.

Конструкция заземлителя зависит от типа молниеотвода, т.е. отдельно стоящего или установленного на здании.

При отдельно стоящих молниеотводах приемлемыми, без расчета их импульсного сопротивления растеканию тока молнии rи, являются типовые конструкции заземлителей, приведенные в табл. 8.1 (см. также ).

При расположении молниеотвода на защищаемом здании в качестве заземлителей рекомендуется широко использовать железобетонные фундаменты зданий и сооружений.

Таблица 8.1

№ п/п

Заземлитель

Эскиз

Размеры, м

Железобетонный подножник

a  1,8

b  0,4

l  2,2

Железобетонная свая

d = 0,250,4

l  5

Стальной двухстержневой: полоса размером 404 мм стержни диаметром d = 1020 мм

t  0,5

l = 35

c = 35

Стальной трехстержневой: полоса размером 40 х 4 мм стержни диаметром d = 10  20 мм

t  0,5

l = 35

c = 56

Металлические и железобетонные конструкции зданий I категории по устройству молниезащиты могут быть использованы только для защитного заземления электроустановок и защиты от вторичных воздействий молнии. Для зданий II и III категории металлические и железобетонные конструкции используются и для защиты от прямых ударов молнии. Устройство молниезащиты зданий в железобетонном исполнении включает молниеприемную сетку, соединяемую сваркой с арматурой всех колонн. Ток молнии через нее попадает на арматуру колонн, затем стекает на арматуру фундамента и через защитный слой бетона – в землю.

Основанием для использования арматуры железобетонных фундаментов в качестве заземлителей являются свойства бетона во влажном состоянии иметь проводимость, сопоставимую с проводимостью грунта, окружающего фундамент. При этом выполняются условия сохранения несущей способности здания и исключаются условия разрушения арматурных стержней и бетона от электрической коррозии, что обеспечивается уменьшением плотности тока, стекающего с арматуры фундамента, и ограничением его стекания через бетон в надземных конструкциях. Указанные меры включают объединение в единую систему всех железобетонных (или металлических) конструкций, соединение с помощью сварки всех элементов арматурного каркаса и создание непрерывной электрической цепи по арматуре.

Битумные и битумно-латексные покрытия фундаментов не являются препятствием для использования их в качестве заземлителей.

В средне- и сильноагрессивных грунтах, где защита железобетона от коррозии выполняется эпоксидными и другими полимерными покрытиями, а также при влажности грунта менее 3 % использовать железобетонные фундаменты в качестве заземлителей не допускается.

При использовании в качестве заземляющих устройств все элементы металлических и железобетонных конструкций (фундаменты, колонны, фермы, стропильные, подстропильные и подкрановые балки) должны образовывать непрерывную электрическую цепь по металлу, а в железобетонных элементах (колоннах) дополнительно должны предусматриваться закладные детали (изделия) для присоединения электротехнического и технологического оборудования.

В качестве заземлителей молниезащиты допускается использовать все рекомендуемые ПУЭ заземлители электроустановок, за исключением нулевых проводов воздушных линий электропередачи напряжением до 1 кВ.

Нормирование заземлителей молниезащиты. Принятый в инструкции подход к нормированию и выбору заземлителей молниезащиты зданий и сооружений учитывает, что одним из эффективных способов ограничения грозовых перенапряжений в цепи молниеотвода, а также на металлических конструкциях и оборудовании объекта является обеспечение низких сопротивлений заземлителей растеканию в земле токов молнии. Поэтому при выборе молниезащиты нормированию подлежит сопротивление заземлителя или другие его характеристики, связанные с его сопротивлением.

До введения в нормативную практику для заземлителей молниезащиты нормировалось импульсное rи сопротивление растеканию токов молнии: его максимально допустимое значение было принято равным 10 Ом для зданий и сооружений I и II категорий и 20 Ом для зданий и сооружений III категории. При этом допускалось увеличение импульсного сопротивления до 40 Ом в грунтах с удельным сопротивлением более 500 Омм при одновременном удалении молниеотводов от объектов I категории на расстояние, гарантирующее от пробоя по воздуху и в земле. Для наружных установок максимально допустимое импульсное сопротивление было принято не более 50 Ом.

Импульсное сопротивление заземлителя является количественной характеристикой сложных физических процессов при растекании в земле токов молнии. Его значение отличается от сопротивления заземлителя при растекании токов промышленной частоты и зависит от нескольких параметров тока молнии (амплитуда, крутизна, длина фронта), варьирующихся в широких пределах. С увеличением тока молнии импульсное сопротивление заземлителя падает, причем в возможном интервале распределение токов молнии (от единиц до сотен килоампер) его значение может уменьшаться в 2-5 раз.

Поскольку при проектировании заземлителя нельзя предсказать значения токов молнии, которые будут через него растекаться, то, следовательно, невозможно оценить наперед соответствующие значения импульсных сопротивлений. С учетом этих условий нормирование заземлителей по их импульсному сопротивлению имеет очевидные неудобства. Разумнее выбирать конкретные конструкции (см. табл. 8.1) по следующему условию: импульсные сопротивления заземлителей во всем возможном диапазоне токов молнии не должны превышать указанных максимально допустимых значений.

Такое нормирование было принято в инструкции , где для ряда типовых конструкций заземлителей (см. табл. 8.1) были подсчитаны импульсные сопротивления при колебаниях токов молнии от 5 до 100 кА и по результатам расчетов проведен отбор заземлителей, удовлетворяющих принятому условию.

Наиболее распространенными и рекомендуемыми конструкциями заземлителей являются железобетонные фундаменты. К ним предъявляются дополнительные требования — исключение механических разрушений бетона при растекании через фундамент токов молнии. Исследования показали, что железобетонные конструкции выдерживают большие плотности растекающихся по арматуре токов молнии, что связано с кратковременностью этого растекания. Так, единичные железобетонные фундаменты (сваи длиной не менее 5 или подножники длиной не менее 2 м) способные без разрушения выдерживать токи молнии до 100 кА. Поэтому в табл. 8.1 заданы допустимые размеры единичных железобетонных заземлителей. Для фундаментов больших размеров с соответственно большей поверхностью арматуры опасная для разрушения бетона плотность тока маловероятна при любых возможных токах молнии.

Нормирование параметров заземлителей по их типовым конструкциям имеет ряд достоинств: оно соответствует принятой в строительной практике унификации железобетонных фундаментов с учетом их повсеместного использования в качестве естественных заземлителей; при выборе молниезащиты не требуется выполнять расчеты импульсных сопротивлений заземлителей, что сокращает затраты и объем проектных работ.

Опасность поражения током молнии. При растекании тока с заземлителя или с любого другого подземного металлического предмета в грунте образуется потенциальное (электрическое) поле. Распределение потенциала на поверхности земли при протекании тока молнии через трубчатый заземлитель показано на рис. 8.12. Оно зависит от геометрических размеров электрода, способа его установки, но не зависит от электрических свойств однородного грунта. На небольших удалениях от оси трубы потенциал уменьшается резко, после чего уменьшение делается более плавным. Считают, что на расстоянии x более 20 l потенциал на поверхности земли равен нулю. Наибольший потенциал появляется на самом заземлителе и он равен .

Рис. 8.12. Изменение потенциала на поверхности земли у заземлителя при растекании тока молнии

Если вблизи заземлителя будет находиться человек и расстояние между его ступнями равно S, то он подвергается действию шагового напряжения Uш, равного разности потенциалов U1 и U2 в точках 1 и 2, где находятся ступни. Это может быть опасным для жизни. Еще более опасно, если одна нога окажется непосредственно на заземлителе или человек прикоснется к заземлителю. Тогда он подвергается большей разности потенциалов, равной Uм-U3 , и называемой напряжением прикосновения Uпр.

Снижения шагового напряжения и напряжения прикосновения можно добиться уменьшением сопротивления rи до значения ниже 10 Ом, что довольно трудно, и применением параллельно включенных добавочных электродов, выравнивающих потенциал внутри и вне контура заземлителей. Рациональным распределением вертикальных заземлителей, расположенных по контуру или лучам, и связывающих их горизонтальных электродов можно добиться безопасного распределения потенциала по любому направлению от точки присоединения токоотвода. Для безопасности рекомендуется ограждать или во время грозы не допускать людей к заземлителям ближе 5 м, располагать эти заземлители дальше от дорог, тротуаров или располагать под асфальтовым покрытием.

Как он работает

Конструкция молниезащиты состоит из трех частей:

1. Молниеприемник – металлический штырь, высотой не ниже 2 метров. Может быть установлен на крыше дома, или рядом с ним. Приемник из стали должен быть 50 мм в диаметре; медный – 35 мм; алюминиевый – 70 мм.

2. Токоотвод – кабель из меди или стали, через который разряд устремляется к заземлителю. Обратите внимание, что все части громоотвода должны быть выполнены из одного металла. Токоотвод должен быть изолированным и опускаться к земле по короткому пути, не загибаясь под углом. Расстояние между этим элементом и стеной дома, согласно противопожарным требованиям, должно составлять около 20 см – в случае, если стены выполнены из горючего материала. Если дом кирпичный, кабель располагается вплотную к кладке.

3. Заземлитель – последний элемент молниеотвода, передает полученный ток в землю. Он должен располагаться в специально выкопанной траншее, расположенной рядом с домом (не ближе 1 метра), вдали от прогулочной зоны. Заземлитель представляет собой несколько металлических прутьев, вкопанных в землю и соединенных на расстоянии друг от друга сваркой.

Молниеотвод для частного дома своими руками

Как сделать молниеотвод самостоятельно? Прежде всего, нужно грамотно подойти к вопросу расчетов, выбора материалов и непосредственно монтажа устройства.

Расчет

Молниеотвод – не просто кусок стержня, закрепленный на крыше. Перед монтажом необходимо рассчитать высоту конструкции, достаточной для конкретного здания.

Сначала определим зону, которая будет защищена молниеотводом. Представим ее в виде конуса, где вершина – молниеприемник. Существует специальная формула Н=(rx+1.63Hx)/1.5, где Н-высота возвышающейся части, Нх –высота здания, rx – радиус основания защитной зоны. Выходит, что чем шире безопасная зона, тем выше должен быть штырь. Но не делайте слишком высокий молниеотвод, иначе рискуете притягивать все молнии в районе.

Монтаж молниеотвода

Когда сделаны подготовительные работы, можно переходить к установке громоотвода. Целесообразнее устанавливать его на крыше дома, чем ставить дополнительное сооружение. Выбирайте место, удаленное от центра – лучше всего, на одной из стен. Подготовьте стержень правильной длины, которую вы рассчитали по формуле. У полой трубы заварите отверстие. Подготовьте опору – она должна быть прочной и надежно удерживать молниеприемник. Установите стержень на опору. Далее монтируем токоотвод. Проследите, чтобы он не соприкасался с металлическими частями дома, иначе все напряжение от удара молнии может пойти совсем по другому пути и наделать бед. Собираем контур заземлителя из стальных труб или профиля. Чем толще материал – тем дольше прослужит ваша конструкция, ведь железо в земле ржавеет. Приварите токоотвод к заземлителю по всей длине последнего. Затем настал черед траншеи – ройте ее в соответствие с типом заземлителя: замкнутый или линейный.

  • Замкнутый выполняется в форме треугольника из металлических стержней, и яму под него нужно рыть треугольной формы;
  • Линейный тип – электроды заземления свариваются в одну линию.

Помните, что проводить ток способна только влажная земля. Сухую почву следует пропитать соляным раствором. Забейте электроды в землю. Засыпьте конструкцию. Теперь можно без опасений ждать грозу и проверить молниеотвод в действии.

FILED UNDER : Справочник

Submit a Comment

Must be required * marked fields.

:*
:*