admin / 14.04.2018

Люминесцентная лампа

Принцип работы люминесцентной лампы

Лампа люминесцентная выступает газоразрядным источником света, в котором видимая яркость в основном создается с помощью люминофора, приводящегося в действие ультрафиолетовым излучением разряда. Световая отдача от изделия в несколько раз больше, чем у простых ламп накаливанияпри аналогичных показателях мощности.

Кроме этого, лампа люминесцентная имеет более длительный срок службы, который может превышать период действия обычного прибора в двадцать раз. Это возможно при качественном электропитании, соблюдении ограничений по количеству включений и выключений прибора.

Люминесцентные лампыкупить можно практически в любом магазине, реализующем осветительные устройства. Наибольшее распространение получили ртутные газоразрядные приборы низкого и высокого давления.Последний вид в основном применяют для обустройства уличного освещения, а также в осветительных установках большой мощности. Приборы низкого давления обычно используют в производственных и жилых помещениях.

Лампа люминесцентнаяшироко применяется для создания освещения в общественных зданиях:школах, больницах, офисах и др. С появлением компактных устройств, имеющих электронный балласт, который позволяет вставлять лампы в обычные патроны, люминесцентные изделия становятся популярными и в быту.

Востребованность приборов обусловлена их характеристиками. Они в первую очередь обладают высокой светоотдачей (лампа люминесцентная в 20 Вт светит как обычная 100 ваттная), длительным сроком работы (порядка от 2000 до 20 тысяч часов против 1000 у обычной лампы накаливания), а также рассеянным светом и большим разнообразием оттенков.

Приборы целесообразнее использовать для создания общего освещения в помещениях, имеющих большую площадь. Эффективнее всего применять изделия вместе с системами Дали, которые позволяют повысить условия освещения, при этом потребление энергии снижается более чем наполовину, а срок действия устройств увеличивается.

Люминесцентная лампа также широко применяется на рабочих местах, в световой рекламе,для улучшения вида фасадов зданий и т.

д. Устройства находят свое место в подсветке экранов жидкокристаллических мониторов и телевизоров. Разновидностью изделий выступают плазменные панели.

Люминесцентные приборы имеют характерные особенности, связанные с принципом работы.

При включении лампы между двумя находящимися в разных концах устройства электродами пробегает дуговой низкотемпературный электрический разряд. Лампа заполнена инертным газом и ртутными парами, что позволяет вызывать УФ излучение, которое не видно человеку. В свет его преобразуют с помощью эффекта люминесценции.

Для более стабильной работы устройств применяют специальные пускорегулирующие электронные аппараты (ЭПРА) для люминесцентных ламп. Они обеспечивают надежное функционирование светильников, исключая гудение и мигание, при этом электропотребление уменьшается на четверть.

Люминесценция — излучение, которое не требует нагрева тел и может возникать в газообразных, жидких и твердых телах под действием, например, ударов электронов, движущихся со скоростями, достаточными для возбуждения.

Люминофоры — твердые или жидкие вещества, способные излучать свет под действием различного рода возбудителей.

В люминесцентных и ряде других типов газоразрядных ламп используют фотолюминесценцию — оптическое излучение, возникающее в результате поглощения телами оптического излучения, но с другой длиной волны.

Электрические лампы, в которых электроэнергия превращается в световую непосредственно, независимо от теплового состояния вещества, за счет люминесценции, называются люминесцентными.

В зависимости от давления газа в лампе бывают люминесцентные лампы низкого давления (ЛНД) и высокого давления.

Люминесцентные лампы — это газоразрядные лампы низкого давления, в которых возникающее в результате газового разряда невидимое для человеческого глаза ультрафиолетовое излучение преобразуется люминофорным покрытием в видимый свет (принцип работы люминесцентной лампы).

Устройство люминесцентных ламп.

Люминесцентная лампа представляет собой стеклянную герметически закрытую трубку, внутренняя поверхность которой покрыта тонким слоем люминофора. Из трубки удален воздух и в нее введены небольшое количество газа (аргона) и дозированная капля ртути.

Внутри трубки на ее концах, в стеклянных ножках, укреплены биспиральные электроды из вольфрама, соединенные с двухштырьковыми цоколями, служащими для присоединения лампы к электрической сети посредством специальных патронов. При подаче электрического токак лампе между электродами возникает электрический разряд в парах ртути, в результате электролюминесценции паров лампа излучает свет.

И если раньше люминесцентные лампы выглядели в основном как длинные белые трубочки различной длины, то теперь повсеместно встречаются люминесцентные лампы с обычными цоколями для использования в стандартных светильниках и люстрах. Это так называемые энергосберегающие лампы, приобретающие все более широкое использование наряду с галогенными лампамии светодиодными светильниками.

Принцип действия люминесцентных ламп.

Принцип действия люминесцентной лампы низкого давления основан на дуговом разряде в парах ртути низкого давления. Получающееся при этом ультрафиолетовое излучение преобразуется в видимое в слое люминофора, покрывающего внутренние стенки лампы. Лампы представляют собой длинные стеклянные трубки, в торцы которых впаяны ножки, несущие по два электрода, между которыми находится катод в виде спирали.

В трубку лампы введены пары ртути и инертный газ, главным образом аргон. Назначением инертных газов является обеспечение надежного загорания лампы и уменьшение распыления катодов. На внутреннюю поверхность трубки нанесен слой люминофора.

Если к электродам, вставленным в концы стеклянной трубки, которая заполнена разряженным инертным газом или парами металла, приложить напряжение из расчета не менее 500 — 2000в на 1 м длины трубки, то свободные электроны в полости трубки начинают лететь в сторону электрода с положительным зарядом. Когда к электродам приложено переменное напряжение, направление движения электронов изменяется с частотой приложенного напряжения.

В своем движении электроны встречаются с нейтральными атомами газа, заполнителя полости трубки, и ионизируют их, выбивая электроны с верхней орбиты в пространство. Возбужденные таким образом атомы, вновь сталкиваясь с электронами, снова превращаются в нейтральные атомы. Это обратное превращение сопровождается излучением кванта световой энергии.

Утилизация люминесцентных ламп.

В свете современных тенденций мы стремимся экономить электроэнергию. Для этого мы покупаем энергосберегающие лампочки, которые, как правило, являются люминесцентными. При покупке люминесцентных энергосберегающих ламп надо ответственно подходить к вопросу их утилизации, так как они в своем составе содержать вещества, очень вредные для окружающей среды, в частности, ртуть.

Надо знать, понимать и помнить, что эти лампочки нельзя просто так выкинуть в мусорное ведро и вместе с остальным мусором отправить на мусорную свалку. Это преступное отравление экологической среды Вашего района. Такие лампы необходимо сдавать в специальные пункты утилизации.

Вы можете отнести энергосберегающие лампочки на утилизацию в свою управляющую компанию и сдать их туда совершенно бесплатно. Закон обязывает управляющие компании ставить у себя специальные контейнеры для сбора у населения токсичных ламп.

Наш дежурный электрик в Королевесообщил, что специальный контейнер для передачи на утилизацию люминесцентных ламп стоит в гипермаркете «Глобус» на входе. Адрес магазина: г.

Королев, ул. Коммунальная, д.1. Электрик в Щелковоподтвердил, что в щелковском «Глобусе» также стоит контейнер для лампочек (адрес: г. Щелково, Пролетарский пр-т, д.

18). Такую же информацию мы получили от нашего мастера электрика в Пушкино: пушкинский «Глобус» на Ярославском шоссе также принимает лампочки на утилизацию. Лампочки, батарейки и ртутные градусники потом поступают в специальные пункты, с которыми у сети заключены соответствующие договоры.

А наш электрик в Сергиевом Посаде, который выезжал для проведения электромонтажных работ на одном из районных предприятий, так и не смог найти компанию по утилизации ламп в Сергиевом Посаде. Пришлось обращаться в московский пункт приема люминесцентных ламп.

Если материал этой статьи был для вас интересен и полезен, поделитесь им со своими знакомыми в социальных сетях. Возможно, кому-то эта информация очень пригодится. C уважением, Королевский электрик в Мытищах.

Люминесцентная лампа, явившаяся результатом целого ряда открытий и исследований (подробнее об этом в статье история люминесцентной лампы), сегодня стала одним из основных источников искусственного света, как в офисных помещениях, так и в частных домах и квартирах.

Ряд выгодных отличий от популярной еще пару десятков лет назад лампы накаливания, позволили люминесцентной лампе достаточно успешно конкурировать с «фаворитными» источниками света, а также привело к созданию ее боле совершенных и компактных модификаций. Но речь в этой статье пойдет не о ее достоинствах или недостатках, а о том, как она работает.Все виды люминесцентных ламп, будь то популярные сейчас «экономки» или старые длинные лампы дневного света, построены и работают примерно по одному и тому же принципу. Отличие может быть лишь в электронной схеме подключения к источнику питания.

Конструкция люминесцентной лампы

Лампа состоит из стеклянной колбы (может быть самой разнообразной формы и размеров), двух (иногда четырех) электродов, инертного газа, ртути (паров), люминофора и схемы запуска (в экономках она находится внутри корпуса лампы).

Электрод представляет собой два проводящих электрических контакта(обычно из проволоки), к которым подводится электрический токи нить накала, покрытую специальным эмиссионным веществом для более эффективного испускания электронов в процессе работы и большей продолжительности службы самой лампы.

Когда электрическая цепьлампы подает на электроды ток, они начинают постепенно разогреваться и испускать электроны. Но этих электронов недостаточно, чтобы зажечь между электродами, так называемый тлеющий разряд – поток ионизированных частиц газа.

Тогда в работу вступает та часть схемы управления, которая отвечает за запуск лампы. Кратковременный импульс напряжениязажигает инертный газ в лампе, а затем и пары ртути. Симбиоз этих веществ, ионизированных электрическим током, приводит к возникновению свечения в невидимой для нас ультрафиолетовой области спектра.

Чтобы преобразовать ультрафиолетовый свет в видимый свет, используется люминофор, нанесенный на стенки стеклянной колбы. Получается двойное преобразование. Сначала электроны, испускаемые электродами лампы, ионизируют газ и пары ртути, а затем ионизированные частицы возбуждают люминофор, заставляя его испускать видимый для нашего глаза свет.

Устройство люминесцентной лампы

Для того чтобы понять принцип работы однолампового светильника, надо познакомиться с его схемой. Светильник состоит из следующих элементов:

    стеклянная цилиндрическая трубка;два цоколя с двойными электродами;стартер, работающий на начальном этапе поджига;электромагнитный дроссель;конденсатор, подключенный параллельно питающей сети.

Колба изделия выполнена из кварцевого стекла.

На начальном этапе ее изготовления из нее откачан воздух и создана среда, состоящая из смеси инертного газа и паров ртути. Последняя находится в газообразном состоянии за счет избыточного давления, созданного во внутренней полости изделия. Стенки покрыты изнутри фосфоресцирующим составом, он превращает энергию ультрафиолетового излучения в видимый человеческому глазу свет.

К выводам электродов на торцах устройства подводится переменное напряжение сети. Внутренние вольфрамовые нити покрыты металлом, который при разогреве испускает со своей поверхности большое количество свободных электронов. В качестве таких металлов могут применяться цезий, барий, кальций.

Электромагнитный дроссель представляет собой катушку, намотанную для повышения индуктивности на сердечнике из электротехнической стали с большой величиной магнитной проницаемости.

Стартер работает на начальном этапе процесса тлеющего разряда, протекающего в газовой смеси. В его корпусе находятся два электрода, один из которых биметаллический, способный под действием температуры изгибаться и изменять свои размеры. Он выполняет роль замыкателя и размыкателя электрической цепи, в которую включен дроссель.

Принцип работы люминесцентного светильника

Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.

Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов.

Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.

На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.

Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.

Варианты исполнения

Существует большое разнообразие электролюминесцентных ламп, но все они могут иметь различие по:

    форме исполнения;виду балласта;внутреннему давлению.

Форма исполнения может быть как у обычных люминесцентных ламп – линейная трубка либо трубка в виде латинской буквы U. К ним добавились компактные варианты, выполненные под привычный цоколь с использованием различных спиральных колб.

Балласт является приспособлением, стабилизирующим работу изделия. Электронный и электромагнитный виды являются самыми распространенными схемами включения.

Внутреннее давление определяет область использования изделий. В бытовых целях или общественных местах нашли применение лампы низкого давления или энергосберегающие образцы. В промышленных помещениях или местах с пониженными требованиями к цветопередаче используют экземпляры высокого давления.

Для оценки способности освещения применяют показатель мощности лампы и ее светоотдачи. Можно привести еще много различных параметров классификации и вариантов исполнения, но их количество постоянно увеличивается.

Преимущества и недостатки люминесцентных ламп ↓


Люминесцентными называются газоразрядные лампочки низкого давления. В них возникает в результате газового разряда ультрафиолетовое излучение (абсолютно невидимое для человеческого глаза), которое преобразуется в видимый свет люминофорным покрытием. Люминесцентная лампа представляет собой цилиндрическую трубку с электродами, куда закачиваются пары ртути. При воздействии электрического разряда пары ртути начинают излучать ультрафиолетовые лучи, заставляющие люминофор, нанесенный на стенки трубки, излучать видимый свет.

Люминесцентная лампа способна обеспечить равномерный мягкий свет, которым достаточно трудно управлять ввиду большой поверхности излучения. Люминесцентные лампы по форме могут быть линейными, кольцевыми, U-образными, а также компактными. Диаметр трубки лампы, как правило, указывают в восьмых частях дюйма (к примеру, T5 = 5/8» = 15,87 миллиметров). А вот в каталоге ламп диаметр чаще всего указывают в миллиметрах – к примеру, 16 миллиметров для ламп Т5. Большая часть люминесцентных ламп соответствует международному стандарту.

На сегодняшний день промышленность выпускает более 100 разных типоразмеров ламп данного типа общего назначения. Самыми распространенными являются лампы, мощность которых составляет 15, 20, 30 Вт для напряжения 127 В, а также 40, 80 и 125 Вт для напряжения 220 В. Средняя продолжительность срока служения лампы составляет около 10 тысяч часов.

Преимущества и недостатки люминесцентных ламп, а также их физические характеристики напрямую зависят от уровня температуры окружающей среды, что обусловливается температурным режимом давления паров ртути, находящихся в лампе. Если температура стенки колбы составляет около +40 С, то лампа достигает максимально высокой световой отдачи.

Основными достоинствами люминесцентных ламп являются такие, как очень высокая световая отдача, которая может достигать 75 лм/Вт, длительный срок службы, у стандартных ламп доходящий до 10 тысяч часов. Многие потребители выбирают данный тип ламп из-за возможности обладать источниками света разного спектрального состава при наилучшей цветопередаче. В ряде случаев достоинством является и относительно малая яркость, которая не сильно слепит глаза.

Из недостатков можно выделить ограниченную единичную мощность лампы при больших размерах для такой мощности, относительную сложность подключения, отсутствие возможности питания лампы постоянным током. Люминесцентная лампа и ее характеристики довольно сильно зависят от уровня температуры окружающей среды. Так, для обыкновенной люминесцентной лампы наиболее оптимальной температурой окружающего воздуха является диапазон от +18 до +25 С. Если есть отклонение температуры от указанного показателя, оптимальный световой поток, световая отдача лампы значительно снижаются. Более того, когда в помещении отмечена температура ниже +10 С, зажигание лампы вообще не гарантируется. Поэтому люминесцентные лампы используются лишь там, где их эксплуатация оправданна и предполагает получение эффекта, который невозможно создать при помощи других типов ламп.

Как работает люминесцентная лампа

Инертный газ в лампе нужен для создания тлеющего разряд (поток ионизированных частиц инертного газа). Ртуть нужна для усиления этого разряда. Люминофор нужен для преобразования ультрафиолетового света, в свет видимого спектра. Электроды нужны для подключения лампы в электрическую схему и создания разряда электронов.

После подачи напряжения на контакты лампы, электроды внутри колбы начинают испускать электроны, которые перемещаясь по колбе, пытаются создать разряд. Однако, в нормальных параметрах схемы силы тока не достаточно для создания разряда. Поэтому, в схему подключения люминесцентной лампы обязательно включают устройство, создающее разовый электрический разряд для старта свечения.

Называется это устройство стартер фото. Его задача, при подаче электричества кратковременно увеличить силу токов 3-4 раза.

Для обеспечения запуска и работы (свечения) люминесцентной лампы (группы ламп), нужно другое устройство, называемое по-простому дроссель. Это название устарело фактически, но активно используется.

Правильное название дросселя, пускорегулирующий аппарат (ПРА). На сегодня, название дроссель (ПРА) преобразили в ЭмПРА и ЭПРА.

  • ЭмПРА: электромагнитный пуск–регулирующий аппарат;
  • ЭПРА: электронный пуск–регулирующий аппарат (электронный балласт).

ЭПРА более быстро зажигает лампу, не гудит при работе и регулирует запуск при пониженных напряжениях. Если старый дроссель, по сути, был увесистая электромагнитная катушка, то современный ЭПРА это компактные даже изящные устройства.

FILED UNDER : Справочник

Страницы