admin / 31.05.2018

Компенсация реактивной мощности

Компенсация реактивной мощности — в жилых помещениях обычно установлен один счетчик электроэнергии. Принято считать, что расходуется только активная часть электроэнергии. Это не совсем правильно, так как существует еще такой показатель, как реактивная мощность, которую можно охарактеризовать задержкой между фазными синусоидами тока и напряжения в сети питания.

Показателем расхода реактивной мощности считается коэффициент мощности. Он равен косинусу угла между напряжением и током. Коэффициент мощности нагрузки рассчитывается как отношение расходуемой активной мощности к общей мощности:

Содержание

сos (ф) = P / S

Таким показателем характеризуют реактивную мощность генераторов, электродвигателей и всей сети. В современных квартирах имеется много различных бытовых устройств, которые при функционировании сдвигают фазу напряжения. Но, доля реактивной мощности, потребленной бытовыми электрическими устройствами намного меньше, чем оборудованием промышленных предприятий. По этой причине при расчете расхода электроэнергии этой частью энергии пренебрегают.

Компенсация реактивной мощности в цепях потребителей на промышленных предприятиях является необходимостью, иначе это будет оказывать негативное влияние на энергосистемы, выраженное в нагревании обмоток трансформаторов в пиковые часы, нагреве воздуха вокруг линии электропередач и других отрицательных явлений.

Емкостная и индуктивная нагрузка

Если рассмотреть простой потребитель электроэнергии в виде лампочки или нагревателя, то мощность, которая характеризует это устройство (указана в инструкции), будет равна произведению тока и напряжения на этом устройстве. Но, если в конструкции устройства находится, например, трансформатор, либо другие элементы, имеющие индуктивность или емкость, то мощность определяется иначе.

Такие элементы в устройствах имеют специфические свойства. В них электрический ток по фазе отстает от напряжения, либо опережает его, то есть, фаза сдвигается. В таком случае к обычному расчету потребляемой мощности необходимо добавить коэффициент мощности.

Если векторы активной и реактивной мощности сложить между собой, то в результате получится полная мощность потребления. На графике она изображена в виде гипотенузы треугольника. На практике, чем меньше угол наклона гипотенузы (полной мощности), тем лучше.

Q – реактивная мощность, Р – активная мощность, S – полная мощность.

Полному равенству активной и полной мощности мешает реактивная составляющая мощности, которую называют паразитной. Она отрицательно влияет на работу линии электропередач и трансформаторы подстанции, которые могут перегреваться.

Эту проблему решает компенсация реактивной мощности, которая снижает угол φ, и приближает коэффициент мощности к единице. Для обеспечения такой компенсации необходимо увеличить вектор реактивной мощности настолько, чтобы появился резонанс токов, при котором доля реактивной мощности значительно снизится. Простым способом решения этой задачи является подключение конденсаторов необходимой емкости в автоматическом режиме.

Сегодня существуют системы, удерживающие коэффициент мощности в пределах 0,9-1. Идеального результата добиться трудно, так как подключение емкостей происходит ступенчато. Однако эффект экономии от этого получается неплохой. Такие устройства имеют интеллектуальные алгоритмы, действующие автоматически, без настроек. Достижения науки в области информационных технологий позволяют достичь равномерного включения конденсаторов. Время реакции приборов снижено до минимума, вспомогательные дроссели уменьшают перепад напряжения при процессах перехода.

Система управления питанием промышленного предприятия выполнена в виде щита эргономичной компоновки. Он обеспечивает работу оператора для быстрого принятия решения в аварийных случаях.

Простое устройство, с помощью которого обеспечивается компенсация реактивной мощности, состоит из металлического шкафа с контрольной панелью управления на лицевой части. Внизу шкафа размещены батареи конденсаторов. Они имеют немалый вес, поэтому и размещаются снизу.

Вверху расположены приборы контроля, показывающие различные параметры сети, в том числи и коэффициент мощности. Имеется аварийная индикация, переключатель работы с ручного режима на автоматический. Микропроцессор устройства сравнивает показания датчиков и выдает сигналы управления на исполнительные устройства. Такие механизмы выполнены на основе мощных тиристоров, поэтому их работа не создает шума, и имеет высокое быстродействие.

Виды компенсации реактивной мощности

  • Постоянная (индивидуальная) компенсация. При этом индуктивная мощность компенсируется на месте возникновения, что приводит к уменьшению нагруженности проводов.
  • Групповая компенсация. В ней по аналогии с постоянной компенсацией для нескольких индуктивных нагрузок подключается общая батарея конденсаторов. Разгружается электрическая сеть.
  • Централизованная компенсация. При ней некоторое количество конденсаторов подключается к групповому или основному распределительному щиту. Такой метод используют чаще всего в больших системах с изменяемой нагрузкой. Управление этой емкостной установки осуществляет электронный контроллер, анализирующий расход реактивной мощности. Такие регуляторы производят коммутацию конденсаторов.

Определение емкости конденсаторов

На предприятиях промышленности реактивную мощность можно определить по числу работающих устройств с учетом их характеристик, сдвигающих фазу. Например, асинхронный двигатель, который чаще всего имеет место в приводах механизмов на заводе, наполовину загруженный, имеет коэффициент мощности 0,73, светильник люминесцентного типа 0,5. Коэффициент мощности сварочного аппарата находится в интервале 0,8-0,9, печь дуговая 0,8.

По таблицам можно найти эти параметры для любого оборудования. Такая информация является базовой. На ее основе вносятся корректировки путем отключения и добавления конденсаторов.

Компенсация реактивной мощности в квартире

Электрические устройства домашней бытовой сети имеют активное, емкостное и индуктивное сопротивление. Для них подходят все, рассмотренные выше, формулы расчета мощности. Это создает дополнительную нагрузку на электропроводку в квартире.

Эти показатели не учитываются в старых электросчетчиках индукционного типа. Некоторые новые модели приборов учета могут фиксировать их. Это дает возможность произвести точный анализ ситуации нагрузки тока и теплового воздействия на изоляцию проводов при эксплуатации большого числа потребителей. Емкостное сопротивление у бытовых устройств имеет малую величину и не учитывается электросчетчиками.

Компенсация реактивной мощности в таких случаях заключается во включении в электрическую цепь батарей конденсаторов, которые способны погасить индуктивную составляющую мощности. Конденсаторы должны включаться в определенный момент на некоторый промежуток времени.

Такие устройства компенсации имеют большие размеры, и больше подходят для промышленных целей в комплексе с автоматической системой. Они не уменьшают расход активной мощности и не сокращают оплату за электроэнергию.

Чудо-приборы

В интернете и в торговой сети встречается множество рекламируемых устройств, которые якобы снижают реактивную мощность, и очень сильно экономят электрическую энергию, что создаст колоссальное снижение денежных затрат. Однако, как показывает практика, такие устройства являются всего лишь мифом, и не могут экономить электроэнергию.

Одним из таких приборов является «Saving Box». Его возможности и технические данные используются в качестве рекламы и не соответствуют действительности. Такая реклама построена на обмане покупателей.

Компенсация реактивной мощности и ее необходимость

Реактивная составляющая мощности снижает показатели функциональности энергетической системы. Реактивные токи генераторов повышают потребление топлива, потерю энергии в приемниках и подводящих сетях.

Реактивная энергия создает дополнительную нагрузку на линии электропередач. В связи с этим необходимо увеличивать поперечное сечение жил кабелей и проводов. Как следствие, повышаются затраты на электропроводящие материалы.

Основными нагрузками, потребляющими реактивную мощность, являются:

  • Асинхронные электродвигатели, расходующие около 40% общей мощности, вместе с бытовыми нуждами.
  • Линии электропередач (расходуют около 7%).
  • Преобразователи (10%).
  • Электрические печи (8%).
  • Трансформаторы (35%).

Наиболее эффективным методом уменьшения расхода реактивной мощности является использование устройств, с помощью которых проводится компенсация реактивной мощности. Такими устройствами являются конденсаторные установки.

Преимущества применения конденсаторных установок

  • Снижение расходов на оплату электрической энергии.
  • Снижение расходов на техническое обслуживание и ремонт, а также обновление электрооборудования.
  • Подавление помех в сети.
  • Уменьшение перекоса фаз.
  • Повысить возможности системы электроснабжения, что позволяет дополнительно подключить электрические устройства без повышения стоимости сети питания.
  • Снижение токовой нагрузки на трансформаторы, распредустройства и линии электропередач.
  • Уменьшение уровня гармонических колебаний высокой частоты.
  • Повысить экономичность и надежность распределительных сетей.
  • Получение информационных данных о состоянии и параметрах электрической сети.

В чём разница между активной и реактивной энергией?

Люди привыкли платить за ту электроэнергию, которую они потребляют. Они оплачивают энергию, используемую для обогрева помещения, приготовления еды, нагревания воды в ванной комнате (кто пользуется индивидуальными водонагревателями) и другую полезную электрическую энергию. Именно она и называется активной.

Как известно, генератор переменного тока вырабатывает два вида электрической энергии — активную и реактивную. Активная энергия расходуется в электрических печах, лампах, электрических машинах и иных потребителях, переходя в другие виды энергии — тепловую, световую, механическую. Реактивная же энергия не расходуется потребителями и возвращается по питающей линии к генератору. Это влечет рост тока, протекающего по ЭС, и соответственно требует увеличения площади их сечения.

Компенсация реактивной мощности

В электрических цепях, содержащих комбинированные сопротивления (нагрузку), в частности, активную (лампы накаливания, электронагреватель и др.) и индуктивную (электродвигатели, распределительные трансформаторы, сварочное оборудование, люминесцентные лампы и др.) составляющие, общую мощность, забираемую от сети, можно выразить следующей векторной диаграммой:

Отставание тока по фазе от напряжения в индуктивных элементах обуславливает интервалы времени (см. рис.), когда напряжение и ток имеют противоположные знаки: напряжение положительно, а ток отрицателен и наоборот. В эти моменты мощность не потребляется нагрузкой, а подается обратно по сети в сторону генератора. При этом электроэнергия, запасаемая в каждом индуктивном элементе, распространяется по сети, не рассеиваясь в активных элементах, а совершая колебательные движения (от нагрузки к генератору и обратно). Соответствующую мощность называют реактивной.

Полная мощность складывается из активной мощности, совершающей полезную работу, и реактивной мощности, расходуемой на создание магнитных полей и создающей дополнительную нагрузку на силовые линии питания. Соотношение между полной и активной мощностью, выраженное через косинус угла между их векторами, называется коэффициентом (фактором) мощности.

Активная энергия преобразуется в полезную — механическую, тепловую и др. энергии. Реактивная энергия не связана с выполнением полезной работы, однако она необходима для создания электромагнитного поля, наличие которого является необходимым условием для работы электродвигателей и трансформаторов. Потребление реактивной мощности от энергоснабжающей организации нецелесообразно, так как приводит к увеличению мощности генераторов, трансформаторов, сечения подводящих кабелей (снижение пропускной способности), а так же повышению активных потерь и падению напряжения (из-за увеличения реактивной составляющей тока питающей сети). Поэтому реактивную мощность необходимо получать (генерировать) непосредственно у потребителя. Эту функцию выполняют установки компенсации реактивной мощности (КРМ) , основными элементами которых являются конденсаторы.
Установки КРМ — электроприемники с емкостным током, которые при работе формируют опережающую реактивную мощность (ток по фазе опережает напряжение) для компенсации отстающей реактивной мощности, генерируемой индуктивной нагрузкой.
Реактивная мощность Q пропорциональна реактивному току, протекающему через индуктивный элемент:
Q = U x IL,
где IL — реактивный (индуктивный) ток, U — напряжение сети. Таким образом, полный ток, питающий нагрузку, складывается из активной и индуктивной составляющих:
I = IR + IL.
Для снижения доли реактивного тока в системе «генератор-нагрузка» параллельно нагрузке подключают компенсаторы (установки КРМ). Реактивная мощность при этом уже не перемещается между генератором и нагрузкой, а совершает локальные колебания между реактивными элементами — индуктивными обмотками нагрузки и компенсатором. Такая компенсация реактивной мощности (снижение индуктивного тока в системе «генератор-нагрузка») позволяет, в частности, передать в нагрузку большую активную мощность при той же номинальной полной мощности генератора.

Для чего необходима компенсация реактивной мощности?

Основной нагрузкой в промышленных электросетях являются асинхронные электродвигатели и распределительные трансформаторы. Эта индуктивная нагрузка в процессе работы является источником реактивной электроэнергии (реактивной мощности), которая совершает колебательные движения между нагрузкой и источником (генератором), не связана с выполнением полезной работы, а расходуется на создание электромагнитных полей и создает дополнительную нагрузку на силовые линии питания.
Реактивная мощность характеризуется задержкой (в индуктивных элементах ток по фазе отстает от напряжения) между синусоидами фаз напряжения и тока сети. Показателем потребления реактивной мощности является коэффициент мощности (КМ) , численно равный косинусу угла (ф) между током и напряжением. КМ потребителя определяется как отношение потребляемой активной мощности к полной, действительно взятой из сети, т.е.: cos(ф) = P/S. Этим коэффициентом принято характеризовать уровень реактивной мощности двигателей, генераторов и сети предприятия в целом. Чем ближе значение cos(ф) к единице, тем меньше доля взятой из сети реактивной мощности.

Пример: при cos(ф) = 1 для передачи 500 KW в сети переменного тока 400 V необходим ток значением 722 А. Для передачи той же активной мощности при коэффициенте cos(ф) = 0,6 значение тока повышается до 1203 А.

  • возникают дополнительные потери в проводниках вследствие увеличения тока;
  • снижается пропускная способность распределительной сети;
  • отклоняется напряжение сети от номинала (падение напряжения из-за увеличения реактивной составляющей тока питающей сети).

Все сказанное выше является основной причиной того, что предприятия электроснабжения требуют от потребителей снижения доли реактивной мощности в сети.
Решением данной проблемы является компенсация реактивной мощности — важное и необходимое условие экономичного и надежного функционирования системы электроснабжения предприятия. Эту функцию выполняют устройства компенсации реактивной мощности (КРМ-конденсаторные установки) , основными элементами которых являются конденсаторы.

Правильная компенсация реактивной мощности позволяет:

  • снизить общие расходы на электроэнергию;
  • уменьшить нагрузку элементов распределительной сети (подводящих линий, трансформаторов и распределительных устройств), тем самым продлевая их срок службы;
  • снизить тепловые потери тока и расходы на электроэнергию;
  • снизить влияние высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • добиться большей надежности и экономичности распределительных сетей.

Кроме того, в существующих сетях она позволяет:

  • исключить генерацию реактивной энергии в сеть в часы минимальной нагрузки;
  • снизить расходы на ремонт и обновление парка электрооборудования;
  • увеличить пропускную способность системы электроснабжения потребителя, что позволит подключить дополнительные нагрузки без увеличения стоимости сетей;
  • обеспечить получение информации о параметрах и состоянии сети,

а во вновь создаваемых сетях — уменьшить мощность подстанций и сечения кабельных линий, что снизит их стоимость.

Где необходима компенсация реактивной мощности

Одним из основных направлений сокращения потерь электроэнергии и повышения эффективности электроустановок промышленных предприятий является компенсация реактивной мощностис одновременным повышением качества электроэнергии непосредственно в сетях предприятий. Чем ниже коэффициент мощности cos(ф) при одной и той же активной нагрузке электроприемников, тем больше потери мощности и падение напряжения в элементах систем электроснабжения. Поэтому следует всегда стремиться к получению наибольшего значения коэффициента мощности.
Для решения этой задачи применяются компенсирующие устройства, называемые установками компенсации реактивной мощности (КРМ) , основными элементами которых являются конденсаторы. Применение установок КРМ позволяет исключить оплату за потребление из сети и генерацию в сеть реактивной мощности, при этом суммы платежа за потребляемую энергию, определяемые тарифами энергосистемы, значительно сокращаются.
Применение установок КРМ эффективно на предприятиях, где используются станки, компрессоры, насосы, сварочные трансформаторы, электропечи, электролизные установки и прочие потребители энергии с резкопеременной нагрузкой, то есть на производствах металлургической, горнодобывающей, пищевой промышленности, в машиностроении, деревообработке и производстве стройматериалов — то есть везде, где из-за специфики производственных и технологических процессов значение cos(ф) колеблется от 0,5 до 0,8.

Применение установок компенсации реактивной мощности КРМ необходимо на предприятих, использующих:

  • Асинхронные двигатели (cos(ф) ~ 0.7);
  • Асинхронные двигатели, при неполной загрузке (cos(ф) ~ 0.5);
  • Выпрямительные электролизные установки (cos(ф) ~ 0.6);
  • Электродуговые печи (cos(ф) ~ 0.6);
  • Индукционные печи (cos(ф) ~ 0.2-0.6);
  • Водяные насосы (cos(ф) ~ 0.8);
  • Компрессоры (cos(ф) ~ 0.7);
  • Машины, станки (cos(ф) ~ 0.5);
  • Сварочные трансформаторы (cos(ф) ~ 0.4);
  • Лампы дневного света (cos(ф) ~ 0.5-0.6).

Снижение величины полной мощности при компенсации реактивной мощности:

* данные получены на основании обобщенного опыта эксплуатации установок КРМ

Существенным для практики является тот факт, что реактивная нагрузка индуктивного характера может быть скомпенсирована включением параллельно ей емкостной нагрузки. При внимательном изучении это явление становится очевидным: отстающий ток индуктивной ветви такой цепи компенсируется опережающим током ветви емкостной. При надлежащем подборе емкости отставание тока в цепи может быть почти полностью скомпенсировано (cos f = 1). Конденсаторы, включаемые параллельно индуктивной нагрузке для компенсации ее РМ, называют компенсирующими, или косинусными (поскольку служат для повышения cos f ЭУ).

Методы компенсации

Компенсация РМ может быть индивидуальной (местной), когда конденсаторы монтируются в непосредственной близости от каждого потребителя и групповой с использованием специальных конденсаторных установок, располагаемых обычно вблизи трансформаторных подстанций, распределительных пунктов и т.п., присоединяемых к началу каждой групповой линии. Такой метод целесообразен для крупных ЭУ.

Для чего нужна компенсация реактивной мощности в распределительных электрических сетях

Активная мощность вырабатывается только генераторами электрических станций. Реактивная мощность вырабатывается генераторами электрических станций (синхронными двигателями станций в режиме перевозбуждения), а также компенсирующими устройствами (например, батареями конденсаторов).
Передача реактивной мощности от генераторов по электрической сети к потребителям (индукционным приемникам энергии) вызывает в сети затраты активной мощности в виде потерь и дополнительно загружает элементы электрической сети, снижая их общую пропускную способность.
Так, например, генератор с номинальной мощностью 1250 кВА при номинальном коэффициенте мощности cosφ=0,8 может отдать потребителю активную мощность, равную 1250×0,8=1000 кВт. Если генератор будет работать с соsφ=0,6 , то в сеть будет отдаваться активная мощность равная 1250×0,6=750 кВт (активная мощность недоиспользуется на четверть).
Поэтому, как правило, увеличение выдачи реактивной мощности генераторами станций с целью доставки ее потребителям нецелесообразно. Наибольший экономический эффект достигается при размещении компенсирующих устройств (генерации реактивной мощности) вблизи потребляющих реактивную мощность индукционных приемников энергии.

Индукционные приемники энергии или потребители реактивной мощности

  • Трансформатор. Он является одним из основных звеньев в передаче электроэнергии от источника электрической энергии до потребителя и предназначен для преобразования посредством электромагнитной индукции системы переменного тока одного напряжения в систему переменного тока другого напряжения при неизменной частоте и без существенных потерь мощности.
  • Асинхронный двигатель. Асинхронные двигатели наряду с активной мощностью потребляют до 65% реактивной мощности энергосистемы.
  • Индукционные печи. Это крупные электроприемники, требующие для своего действия большое количество реактивной мощности. Индукционные печи промышленной частоты часто используются для плавки металлов.
  • Преобразовательные установки, преобразующие переменный ток в постоянный при помощи выпрямителей. Данные установки широко применяются на промышленных предприятиях и железнодорожном транспорте, использующем постоянный ток.
  • Социально-бытовая сфера. Увеличение числа различных электроприводов, стабилизирующих и преобразовательных устройств, применение полупроводниковых преобразователей приводит к росту потребляемой реактивной мощности, а это, в свою очередь, влияет на работу других электроприемников, сокращает срок их службы, создает дополнительные потери электроэнергии. Современные люминесцентные (так называемые энергосберегающие) светильники, которые все шире применяются в квартирах и офисах, также являются потребителями реактивной мощности.

К чему приводит отсутствие компенсации реактивной мощности у абонентов

  • У трансформаторов при уменьшении cosφ уменьшается пропускная способность по активной мощности вследствие увеличения реактивной нагрузки.
  • Увеличение полной мощности при снижении cosφ приводит к возрастанию тока и, следовательно, потерям мощности, которые пропорциональны квадрату тока.
  • Увеличение тока требует повышения сечений проводов и кабелей, растут капитальные затраты на электрические сети.
  • Увеличение тока при снижении cosφ ведет к увеличению потери напряжения во всех звеньях энергосистемы, что вызывает понижение напряжения у потребителей.
  • На промышленных предприятиях понижение напряжения нарушает нормальную работу электроприемников. Снижается частота вращения электродвигателей, что приводит к снижению производительности рабочих машин, уменьшается производительность электрических печей, ухудшается качество сварки, снижается световой поток ламп, уменьшается пропускная способность заводских электрических сетей, а как итог — ухудшается качество продукции.

Реактивная мощность и энергия, реактивный ток, компенсация реактивной мощности

Реактивная мощность и энергия ухудшают показатели работы энергосистемы , то есть загрузка реактивными токами генераторов электростанций увеличивает расход топлива; увеличиваются потери в подводящих сетях и приемниках, увеличивается падение напряжения в сетях.

Реактивный ток дополнительно нагружает линии электропередачи , что приводит к увеличению сечений проводов и кабелей и соответственно к увеличению капитальных затрат на внешние и внутриплощадочные сети.

Компенсация реактивной мощности , в настоящее время, является немаловажным фактором позволяющим решить вопрос энергосбережения практически на любом предприятии.

По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает величину порядка 30-40% в стоимости продукции. Это достаточно веский аргумент, чтобы руководителю со всей серьезностью подойти к анализу и аудиту энергопотребления и выработке методики компенсации реактивной мощности . Компенсация реактивной мощности – вот ключ к решению вопроса энергосбережения.

Потребители реактивной мощности

Основные потребители реактивной мощности — , которые потребляют 40 % всей мощности совместно с бытовыми и собственными нуждами; электрические печи 8 %; преобразователи 10 %; трансформаторы всех ступеней трансформации 35 %; линии электропередач 7 %.

В электрических машинах переменный магнитный поток связан с обмотками. Вследствие этого в обмотках при протекании переменного тока индуктируются реактивные э.д.с. обуславливающие сдвиг по фазе (fi) между напряжением и током. Этот сдвиг по фазе обычно увеличивается, а уменьшается при малой нагрузке. Например, если косинус фи двигателей переменного тока при полной нагрузке составляет 0,75-0,80, то при малой нагрузке он уменьшится до 0,20-0,40 .

Малонагруженные трансформаторы также имеют низкий (косинус фи). Поэтому, применять компенсацию реактивной мощности, то результирующий косинус фи энергетической системы будет низок и ток нагрузки электрической, без компенсации реактивной мощности, будет увеличиваться при одной и той же потребляемой из сети активной мощности. Соответственно при компенсации реактивной мощности (применении автоматических конденсаторных установок КРМ) ток потребляемый из сети снижается, в зависимости от косинус фи на 30-50%, соответственно уменьшается нагрев проводящих проводов и старение изоляции.

Кроме этого, реактивная мощность наряду с активной мощностью учитывается поставщиком электроэнергии , а следовательно, подлежит оплате по действующим тарифам, поэтому составляет значительную часть счета за электроэнергию.

Структура потребителей реактивной мощности в сетях энергосистем (по установленной активной мощности):

Прочие преобразователи: переменного тока в постоянный, тока промышленной частоты в ток повышенной или пониженной частоты, печная нагрузка (индукционные печи, дуговые сталеплавильные печи), сварка (сварочные трансформаторы, агрегаты, выпрямители, точечная, контактная).

Суммарные абсолютные и относительные потери реактивной мощности в элементах питающей сети весьма велики и достигают 50% мощности, поступающей в сеть. Примерно 70 — 75% всех потерь реактивной мощности составляют потери в трансформаторах.

Так, в трехобмоточном трансформаторе ТДТН-40000/220 при коэффициенте загрузки, равном 0,8, потери реактивной мощности составляют около 12%. На пути от электростанции происходит самое меньшее три трансформации напряжения, и поэтому потери реактивной мощности в трансформаторах и автотрансформаторах достигают больших значений.

Способы снижения потребления реактивной мощности. Компенсация реактивной мощности

Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок) .

Использование конденсаторных установок для компенсации реактивной мощности позволяет:

  • разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
  • снизить расходы на оплату электроэнергии
  • при использовании определенного типа установок снизить уровень высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • сделать распределительные сети более надежными и экономичными.

Любая реактивная энергия, поставляемая потребителю, является причиной повышения стоимости. Измеренная реактивная энергия будет учитываться в договорах с поставщиками. Плата за неё будет взиматься с потребителей с большой мощностью (например, с P> 30 кВт, при установке измерителя квар). Так как договоры не одинаковы, рекомендуется получить всю необходимую информацию в местной энергоснабжающей или распределяющей компании. Энергоснабжающие компании предлагают два вида тарификации, относящиеся к реактивной энергии:

  • тарификация в зависимости от потребляемой реактивной энергии;
  • тарификация в зависимости от потребляемой кажущейся энергии.

Для учёта экономического аспекта эксплуатации установок потребителей необходимо получить от поставщика информацию о преимуществах вида тарификации и условиях договора. Далее рассмотрим учёт повышенной реактивной энергии в различных видах специальных договоров на поставку.

Тарификация в зависимости от потребляемой реактивной энергии (квар∙ч)

Большинство поставщиков выдвигают условие поддержания среднего коэффициента мощности cosφ в течение месяца или расчётного периода выше 0,9. Если потребление реактивной энергии становится больше 50% потребления активной энергии, то дополнительная реактивная энергия будет тарифицироваться. Как говорилось выше, реактивная энергия будет измеряться отдельным счётчиком квар·ч. Обычно дополнительная реактивная энергия (квар·ч) оценивается в диапазоне от 10 до 15% стоимости активной энергии (кВт·ч). Оценка реактивной энергии также может быть предметом переговоров с местным поставщиком. Также нужно обратить внимание, оценивает ли энергоснабжающая компания дополнительную реактивную энергию по периоду высокого тарифа (дневного) или по периоду низкого тарифа (ночному).

В случае системы с распределённой генерацией, которая может отдавать активную энергию обратно в сеть, должны приниматься во внимание специальные технические соображения, так как значения коэффициента мощности cosφ могут оказаться во всех четырёх квадрантах при генерации в перевозбуждённом и недовозбуждённом режимах и для нагрузок с опережающим и отстающим коэффициентами мощности).

На рисунке показан в графическом виде метод определения дополнительного потребления реактивной энергии при коэффициенте мощности, задаваемом энергоснабжающей компанией, например, при cosφ ≈ 0,9. Иногда поставщик может задавать разные коэффициенты мощности в дневной и ночной период, потому что ночью может оказаться удовлетворительным более низкое значение, чтобы избежать опережающего (емкостного) коэффициента мощности в системе электроснабжения. Такие условия могут быть предложены прежде всего в городской местности с большими кабельными сетями в периоды низкой нагрузки. Некоторые изготовители реле коэффициента мощности предлагают в качестве функции возможность автоматического переключения между двумя заданными значениями коэффициента мощности cosφ.

Как определить среднемесячный коэффициент мощности?

Рассмотрим пример: месячное потребление промышленной установки составляет 40 000 кВт·ч активной энергии и 50 000 квар·ч реактивной энергии.

Среднемесячный коэффициент мощности определяется следующим образом:

tgφ = реактивная энергия/активная энергия = 50000 квар·ч/40000 кВт = 1,25.

Следовательно, cosφ = 0,624.

Энергоснабжающая компания в соответствии с договором оценивает дополнительную реактивную энергию, потребляемую вследствие того, что средний коэффициент мощности ниже 0,9, в 15% от средней стоимости активной энергии, составляющей 12 центов за кВт·ч, то есть в 1,8 цента за квар·ч.

Так как нетарифицируемая часть реактивной энергии составляет 50% от потреблённой активной энергии, 50% от 40 000 кВт·ч = 20000 квар·ч не оплачиваются.

Из общего количества реактивной энергии 50 000 квар·ч, потребляемой за месяц, 30 000 квар·ч будут тарифицироваться по 1,8 цента за квар·ч, что составит общую стоимость за месяц €540.

Стоимость за год может составить €6480, если потребитель не повысит средний коэффициент мощности путём компенсации реактивной мощности . Также появляются дополнительные затраты (не отражаемые в счёте в явном виде) из-за увеличения потерь (I2R) в системе передачи и распределения (линии и трансформаторы), оцениваемые по 12 центов за кВт·ч всё время, когда коэффициент мощности cosφ меньше единицы. Этот факт принимается во внимание очень редко.

Тарификация в зависимости от потребляемой кажущейся энергии (квар∙ч)

В этом методе рассматривается максимальная активная мощность, которая может возникнуть в течение расчётного периода. Данные потреблённой активной и реактивной энергии определяют средний cosφm. По этим данным можно вычислить максимальную кажущуюся мощность. Значение cosφ сильно влияет на начисления, когда он меньше единицы. Если принять, что активная мощность постоянна, измеренная тарифицируемая кажущаяся энергия определяется подлежащей оплате реактивной энергией в соответствии со следующей формулой:

S = Pmax/cosφm , где

  • S — кажущаяся мощность (кВА),
  • Pmax – максимальная активная мощность (кВт),
  • сosφm – коэффициент мощности.

Такой метод оценки побуждает пользователя максимально приближать к единице коэффициент мощности сosφm. Это означает, что необходимо применение компенсации реактивной мощности. При этом дополнительным преимуществом окажется уменьшение потерь, о которых говорилось выше (в линиях и трансформаторах). В результате быстро амортизируются высокие инвестиции для компенсации реактивной мощности.

Важность учёта реактивной мощности при определении расходов на подключение

Должна быть сделана правильная оценка потребления мощности предприятия. Необходимо заявить поставщику требуемую (заказываемую) мощность, а также коэффициент спроса, который включает в себя коэффициент нагрузки и коэффициент разновременности. Эти данные являются основой для проектирования системы энергоснабжения. Кроме того, они помогают оптимизировать договор, предлагаемый потребителю. Он приводит к отношению максимальной нагрузки (мощности) к требуемой нагрузке (мощности) поставщика. Многие энергоснабжающие и распределительные компании используют эти данные для расчёта стоимости подключения и сетевых затрат.

  • Стоимость подключения относится к стоимости установки электрического соединения между потребителем и системой электроснабжения. Поставщик взимает эту стоимость с потребителя полностью или частично.
  • Сетевые расходы являются общими расходами и относятся к расходам на построение системы распределения электроэнергии.

Как было сказано выше, заявленная мощность должна даваться поставщику как кажущаяся мощность (кВА). Также должны учитываться такие данные, как коэффициент спроса и средний коэффициент мощности cosφа.

При проектировании новых установок нужно принимать во внимание средний коэффициент мощности cosφа аналогичных установок или проводить расчёты на основе предполагаемых технических характеристик оборудования потребителей.

«Специальные потребители» могут уменьшить затраты посредством классической компенсации реактивной мощности, при этом дополнительно улучшая качество энергии с помощью фильтров. Экономия проявляет себя в различных областях, особенно при уменьшении затрат, относящихся к реактивной энергии, а также к активной энергии в результате уменьшения потерь активной мощности в системе, пиков активной мощности, стоимости инвестиций и стоимости подключения.

FILED UNDER : Справочник

Submit a Comment

Must be required * marked fields.

:*
:*