admin / 06.01.2019

Измерительные трансформаторы напряжения

Содержание

5.4.1. Трансформаторы тока а) Общие сведения и схемы соединения

Трансформаторы тока предназначены для питания измерительных приборов и реле защиты, путем трансформации тока первичной цепи до значений (1 и 5А) наиболее удобных для приборов, а также для отделения цепей измерения и защиты от первичных цепей ВН.

Первичную обмотку 1 ТТ (рис.1) включают в цепь ВН последовательно, а ко вторичной обмотке 3 также последовательно присоединяют катушки приборов и реле.

Рис.1 Схема многовиткового ТТ

1 – первичная обмотка; 2 – магнитопровод; 3 – вторичная обмотка

ТТ характеризуется его номинальным коэффициентом трансформации (обозначается на щитке):

,

где — номинальные значения первичного и вторичного тока.

Значения номинального вторичного тока приняты равными 5 и 1 А.

( величина тока 1А применяют для уменьшения сечения проводов от ТТ до измерительных приборов, что имеет существенное значение в установках очень высоких напряжений и больших мощностей, где вследствие больших габаритов распределительных устройств длина соединительных проводов может достигать нескольких сотен метров, кроме того дешевле как сами ТТ, так и присоединенные к ним приборы и реле).

Коэффициент трансформации ТТ не является строго постоянной величиной и может отличаться от номинального значения вследствие погрешности, обусловленной наличием тока намагничивания. Токовая погрешность определяется по выражению:

Погрешность ТТ зависит от его конструктивных особенностей: сечения магнитопровода, магнитной проницаемости материала магнитопровода, средней длины магнитного пути, значения .В зависимости от предъявляемых требований выпускают ТТ с классами точности 0,2; 0,5; 1; 3; 10. указанные цифры представляют собой токовую погрешность в % номинального тока при нагрузке первичной обмотки током 100-200% для первых трех классов и 50-120% для двух последних. Для ТТ классов точности 0,2; 0,5 и 1 нормируется также угловая погрешность.

Погрешность ТТ зависит от вторичной нагрузки (сопротивление приборов, проводов, контактов) и от кратности первичного тока по отношению к номинальному. Увеличения на­грузки и кратности тока приводят к увеличению погрешности.

При первичных токах, значительно меньших номинального, погрешность трансформатора тока также возрастет.

Трансформаторы тока класса 0,2 применяются для присоедине­ния точных лабораторных приборов, класса 0,5 — для присоедине­ния счетчиков денежного расчета, класса 1 — для всех технических измерительных приборов, классов 3 и 10 — для релейной защиты.

Токовые цепи измерительных приборов и реле имеют малое со­противление, поэтому трансформатор тока нормально работает в ре­жиме, близком к режиму КЗ.

Если разомкнуть вторичную обмотку, магнитный поток в магнитопроводе резко возрастет, так как он будет определяться только МДС первичной обмотки. В этом режиме магнитопровод может нагреться до недопустимой температуры, а на вторичной разомкнутой обмотке появится высокое напряжение, достигающее в некоторых случаях десятков киловольт.

Из-за указанных явлений запрещается размыкать вторичную обмотку трансформатора тока при протекании тока в первичной обмотке. При необходимости замены измерительного при­бора или реле предварительно замыкается накоротко вторичная Обмотка трансформатора тока (или шунтируется обмотка реле, прибора). Вторичные обмотки ТТ обязательно заземляют, чтобы при пробое изоляции между первичной и вторичной обмотками вторичная цепь ТТ не оказалась по отношению к земле под напряжением первичной цепи, что может быть опасно для персонала и может привести к пробою за землю изоляции любого элемента вторичной цепи.

Схемы соединения трансформаторов тока и приборов (рис.2):

Рис. 2. Схемы соединения измерительных трансформаторов тока и при­боров:

а — включение в одну фазу; б — включение в неполную звезду; в — включениев полную звезду

Измерительные трансформаторы напряжения предназначены для возможности измерения высокого напряжения электроустановок переменного тока путем снижения этого напряжения для подачи на защитные реле, приборы измерения и системы автоматики.

При отсутствии измерительных трансформаторов понадобилось бы применять приборы и реле с большими габаритными размерами, так как необходима надежная изоляция от высокого напряжения, которая увеличивает размеры устройств. Изготовить такое оборудование практически невозможно, так как напряжения линий могут достигать величины 110 киловольт.

Измерительные трансформаторы для замера напряжения дают возможность применять стандартные обычные приборы для измерений электрических параметров, при этом увеличивая их диапазон измерения. Защитные реле, подключаемые через эти трансформаторы, могут применяться обычного исполнения.

Гальваническая развязка, которую обеспечивают трансформаторы путем отделения измерительной цепи от высокого напряжения, позволяет создать необходимый уровень безопасности обслуживающего персонала.

Такие трансформаторы нашли свою популярность в устройствах высокого напряжения. От их качественного функционирования зависит степень точности учета расхода электрической энергии и электрических измерений, а также автоматических аварийных систем и защитных реле.

Устройство и работа

Измерительные трансформаторы устроены аналогично понижающим силовым трансформаторам, и состоят из металлического сердечника, выполненного из электротехнической листовой стали, первичной и вторичной обмоток. Трансформаторы могут оснащаться несколькими вторичными обмотками, в зависимости от конструкции и предъявляемых требований к трансформатору.

К первичной обмотке подключается высокое напряжение, а с вторичной обмотки снимается напряжение измерительными устройствами. Коэффициент трансформации такого устройства равен отношению первичного высокого напряжения к номинальному значению вторичного напряжения.

Если бы трансформатор функционировал абсолютно без потерь и с абсолютной точностью, то оба напряжения на обеих обмотках совпадали бы по фазе, и коэффициент трансформации был бы равен единице. Однако на практике коэффициент трансформации всегда меньше единицы, так как всегда имеются некоторые потери энергии при работе трансформатора.

Погрешность измерительного трансформатора зависит от:

  • Величины вторичной нагрузки.
  • Магнитной проницаемости сердечника.
  • Устройства магнитопровода.

Существуют методы снижения погрешности по напряжению путем снижения числа витков первичной обмотки, добавления различных компенсирующих обмоток.

Число витков первичной обмотки намного больше, чем вторичной. Измеряемое напряжение подается на первичную обмотку, к вторичной обмотке подключают различные измерительные приборы: вольтметры, ваттметры, фазометры и т. д.

Трансформаторы напряжения эксплуатируются в режимах, подобных холостому ходу. Это объясняется тем, что подключенный к вторичной обмотке прибор, например, вольтметр, обладает большим сопротивлением, и ток, протекающий по этой обмотке, очень незначителен.

Особенности подключения

Трансформаторы могут устанавливаться как на шинах подстанции, так и на каждом отдельном объекте. Перед электрическим монтажом необходимо осмотреть трансформатор на предмет необходимого уровня масла для масляных моделей, исправности армированных швов, целостности изоляции.

При проведении монтажа обе обмотки трансформатора должны быть завернуты в изоляцию, так как случайное касание выводов вторичной обмотки с проводами, находящимися под напряжением, может привести к возникновению на первичной обмотке опасного для жизни напряжения.

Для безопасности вторичную обмотку перед подключением заземляют. Это предотвращает возможность попадания высокого напряжения в цепи низкого напряжения при возможном пробивании изоляции.

Необходимо учитывать, что если к вторичной цепи подключить слишком много измерительных и других приборов, то величина тока вторичной цепи значительно увеличится, так же как и погрешность измерения. Вследствие этого необходимо следить, чтобы общая мощность присоединенных приборов не превзошла наибольший допустимый предел мощности, определенный инструкцией или паспортом трансформатора.

При превышении общей мощности допустимой величины целесообразно подключить дополнительный трансформатор, и переключить на него несколько приборов от первого трансформатора.

Трансформаторы должны иметь защиту от короткого замыкания, в противном случае при коротком замыкании обмотки перегреются, и изоляция будет повреждена. Для этого в цепях всех незаземленных проводников подключают электрические автоматы, а также рубильники (для образования видимого разрыва цепи при ее отключении). Первичную обмотку трансформатора чаще всего защищают путем установки предохранителей.

Разновидности

Измерительные трансформаторы классифицируются по нескольким признакам и параметрам. Рассмотрим основные из таких признаков и параметров.

По числу фаз:

  • Однофазные.
  • Трехфазные.

По количеству обмоток:

  • Трехобмоточные.
  • Двухобмоточные.

По методу охлаждения:

  • С воздушным охлаждением (сухие).
  • С масляным охлаждением.

По месту монтажа:

  • Внутренние (для монтажа внутри помещений).
  • Внешние (для установки снаружи помещений).
  • Для распределительных устройств.

По классам точности: 0,2; 0,5; 1; 3.

Измерительные трансформаторы с несколькими обмотками

К таким трансформаторам есть возможность подключения сигнализирующих устройств, которые подают сигнал о замыкании цепи с изолированной нейтралью, а также защитных устройств, защищающих от замыканий в цепи с заземленной нейтралью.

На рисунке «а» изображена схема с 2-мя вторичными обмотками. На рисунке «б» показана схема 3-х трехфазных трансформаторов. В них первичные и основные вторичные обмотки соединены по схеме звезды, а нейтральный проводник соединен с землей. На приборы измерения могут подключаться три фазы и ноль от основных вторичных обмоток. Вспомогательные вторичные обмотки соединены «треугольником». От этих обмоток поступает сумма напряжений фаз на дополнительные устройства: сигнальные, защитные и другие.

Основные схемы подключения

Наиболее простая схема с применением однофазного трансформатора изображена на рисунке 4 «а». Она используется в панелях запуска электродвигателей, на пунктах переключения напряжением до 10 киловольт, для подключения реле напряжения и вольтметра.

Схема по рисунку 4 «б» используется для неразветвленных цепей в электроустановках от 0,4 до 10 киловольт. Это дает возможность установить заземление вторичных цепей возле трансформаторов.

Во вторичной цепи, изображенной на рисунке 4 «в», подключен двухполюсный автомат вместо предохранителей. При срабатывании автомата его контакт замкнет сигнальную цепь «обрыв цепи». Вторичные обмотки заземлены в фазе В на щите. Рубильником можно выключить вторичную цепь, и обеспечить при этом видимый разрыв. Такая схема используется в электроустановках от 6 до 35 киловольт при разветвленных вторичных цепях.

На рисунке 4 «г» измерительные трансформаторы подключены схемой «треугольник-звезда». Это позволяет создать вторичное напряжение, необходимое для приборов автоматической регулировки возбуждения компенсаторов. Для надежности функционирования этих приборов предохранители во вторичных цепях не подключают.

Монтаж измерительных трансформаторов тока

Направление монтажа трансформаторов тока

Определите направление энергопотока в кабеле, на котором вы собираетесь выполнить измерения. P1 обозначает сторону, на которой находится источник тока, а P2 – сторону потребителя.

Клеммы S1/S2 (k/l)

Точки подключения первичной обмотки отмечены буквами «K» и «L» или «P1» и «P2», а точки подключения вторичной обмотки – буквами «k» и «l» или «S1» и «S2». При этом необходимо подключать полюса таким образом, чтобы «направление энергетического потока» было направлено от К к L.

Подключение в обратном порядке клемм S1/S2 приводит к неправильным результатам измерения, а в Emax и установках КРМ может привести к ошибкам регулирования.

Длина и сечение провода в измерительном трансформаторе тока

Потребляемая мощность (в Вт), полученная в результате потерь в линии, рассчитывается следующим образом:

удельное сопротивление:

  • для CU: 0,0175 Ом *мм² / м
  • для AI: 0,0278 Ом *мм² / м

L = длина провода в метрах (прямой и обратный провод)

I = сила тока в амперах

A = поперечное сечение провода в мм²

Быстрый обзор (потребляемая мощность медного провода) для 5 A и 1 A:

При каждом изменении температуры на 10 °C поглощаемая кабелем мощность возрастает на 4 %.

Последовательное подключение измерительных приборов к трансформатору тока

Pv = UMG 1 + UMG 2 +….+ Pпровод + Pклеммы ….?

Параллельное включение / трансформатор суммарного тока

Если измерение тока происходит через два трансформатора тока, то необходимо запрограммировать в трансформаторе тока общий коэффициент трансформации.

Пример: Оба трансформатора тока имеют коэффициент трансформации 1 000 / 5A. Измерение суммы происходит через трансформатор суммарного тока 5+5/5A.

В этом случае универсальный измерительный прибор должно быть настроено следующим образом:

Первичный ток: 1 000 A + 1 000 A = 2 000 A

Вторичный ток: 5 А

Заземление трансформаторов тока

Согласно VDE 0414 вторичная обмотка трансформаторов тока и напряжения, начиная со стандартного напряжения 3,6 кВ, должна быть заземлена. При низком напряжении можно обойтись без заземления, если на трансформаторе нет металлических поверхностей, с которыми возможно соприкосновение по большой площади. Обычно трансформаторы низкого напряжения заземляют. Как правило, для заземления используется S1. Возможно также заземление через S1(k)-клемму или через S2(k)-клеммы. Помните: заземление всегда выполняется с одной и той
же стороны!

Использование защитных измерительных трансформаторов

При дооснащении измерительного прибора и исключительной доступности защитного сердечника рекомендуется использовать многовитковый катушечный трансформатор тока 5/5 для разделения защитного сердечника.

Трансформаторы тока разъемные в каталоге.

>Трансформатор напряжения — что это?

    Понятие

    В первую очередь необходимо разобраться: трансформатор напряжения — что это такое. Это особое устройство, которое необходимо для образования гальванической развязки. Иными словами, без прямого контакта с помощью данного устройства соединяются цепи высокого и низкого напряжения. С помощью него можно удешевить эксплуатацию оборудования, а также сделать его надежнее и проще в работе одновременно. Также необходим трансформатор для того, чтобы обеспечить безопасность.

    Чаще всего подобный агрегат работает на холостом ходу. Он не предназначен для огромных потоков мощности и их преобразования, а всего лишь правильно соединяет вторичные обмотки в любых электрических системах. Это простое действие дает серьезный результат. Оно достаточно сильно может понизить или повысить напряжение в зависимости от того, что необходимо в данный момент.

    Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения обслуживания трансформаторных подстанций, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

    Если хотите заказать обслуживание трансформаторных подстанций или задать вопрос, звоните по телефону: +7 (495) 181-50-34.

    Принцип действия ↑

    В основе лежит тот же принцип, что и в обычном понижающем трансформаторе. В центре располагается листовой сердечник с обмоткой. Сделан он по максимально точным, выверенным расчетам, с многослойными металлами и слюдой, а также с учетом того, что в результате получается правильная амплитуда и угол. Тщательно продуманная конструкция необходима для того, чтобы без лишних проблем подключить к сети абсолютно любой прибор. Трансформатор обязан нормализовать напряжение: он «играет» с этой величиной так, как это необходимо в данный момент, выставляя свой личный коэффициент, независимо от начальных данных.

    Наиболее популярным сегодня становится трехфазный трансформатор. Основной принцип его действия заключается в том, что чем ближе действие к холостому ходу, на котором чаще всего и работает подобное устройство, тем коэффициент трансформации все ближе к номинальному значению. Таким образом, получается, что наиболее эффективен подобный трансформатор именно на холостом ходу, как бы странно это не звучало. Это помогает прибору работать максимально безопасно и стабильно, практически полностью исключая любые непредвиденные поломки.

    Необходимо правильно настроить это устройство, потому что трансформатор может работать одновременно в нескольких классах точности. А именно в половину, единицу, а также в три единицы измерения.

    Следует подумать и о мерах безопасности. Это означает — прежде всего — высокое качество самого прибора. Трансформатор «из Китая» или же самодельный совершенно необязательно будет четко выполнять свои функции, более того — иногда может произойти самовозгорание.

    Виды ↑

    На самом деле трансформаторов напряжения достаточно много. Каждый из них может пригодиться в определенной ситуации. Потому необходимо тщательно рассмотреть все характеристики, положительные и отрицательные стороны, чтобы понять, для чего нужен трансформатор напряжения конкретного типа. Они отличаются, прежде всего, конструкцией: именно она накладывает определенные особенности на эксплуатацию.

    Заземляемый

    Этот трансформатор напряжения представляет собой однофазное или трехфазное устройство. Обязательно один его конец должен быть заземлен, именно поэтому он и получил подобное название. В землю уходит нейтраль первичной обмотки.

    Наземляемый

    Этот вариант трансформатора не нуждается в заземлении. Вся его конструкция находится на поверхности. Обязательно должны быть изолированы все уровни, особенно это касается зажимов. В зависимости от уровня напряжения необходимо поднимать некоторые части на определенную высоту.

    Каскадный

    Трансформатор здесь состоит из первичной обмотки, которая строго разделена на несколько секций. Они располагаются на разном уровне от земли и имеют вид каскада. Соединены между собой все эти части с помощью дополнительных связующих обмоток.

    Емкостный

    Подобный трансформатор имеет дополнительную деталь — емкостный делитель, из-за него и появилось название.

    Двухобмоточный

    Помимо первичной обмотки, здесь имеется и вторичная.

    Трехобмоточный

    Подобная модель трансформатора мало отличается от предыдущей, но вторичных обмоток две.

    Каждый тип создан специально для определенной ситуации. В случае необходимости можно любой трансформатор приспособить под определенную электрическую систему, но лучше всего следовать рекомендациям, которые гарантируют полноценную и стабильную работу с минимальными затратами ресурсов.

    Существует огромное количество видов электрических устройств. Предлагаем рассмотреть, что это такое – понижающие и повышающие трансформаторы напряжения, для чего нужны эти приборы, их принцип работы и коэффициент трансформации.

    Определение и назначение

    Трансформатор напряжения ГОСТ 1983-2001- это устройство, используемое в электрических цепях, для того чтобы изменить напряжение электроэнергии. Данные электронные устройства могут использоваться как для повышения электрической энергии, так и для понижения, ими обеспечивается защита отдельных электрических приборов и зданий.

    Фото – Трансформатор напряжения

    В основе работы трансформатора лежит принцип электромагнитной индукции. Железное ядро погружено в изоляционное масла, которое не проводит электричество. Катушки провода физически не подключены. Провод первой катушки имеет больше витков, чем во второй. Разное число витков обмоток обеспечивает разность напряжения катушек. Трансформаторы высокого напряжения работают только с цепями переменного тока.

    Емкостные трансформаторы являются пассивными устройствами – они не добавляют мощность. Но зато не только контролирую количество проходящей энергии, но и гарантируют высокое КПД – мощные измерительные трансформаторы тока и напряжения способны передавать ток с напряжением от 6 кВ до 10 кВ без потерь.

    Фото – Бытовая защита трансформатором

    Принцип работы

    Трансформатор состоит из двух катушек, намотанных на железное ядро. Когда ток переменного напряжения проходит через первичную катушку, вокруг неё образовывается магнитное поле, благодаря которому обеспечивается выполнение закона электромагнитной индукции. Сила магнитного поля увеличивается, если ток возрастает от нуля до ее максимального значения, заданного в формуле dΦ/dt. Магнитный поток может изменять свое направление в обе стороны (на подъем и спад), в зависимости от области использования устройства.

    Фото – Принцип работы

    Тем не менее, напряженность магнитного поля зависит от числа витков обмоток в ядре, чем меньше витков – тем ниже показатель магнетизма. Когда ток уменьшается, напряженность магнитного поля снижается.

    В том случае, когда линии магнитного потока ядра проходят через витки вторичной обмотки, напряжение будет вызываться на вторичной обмотке. Количество индуцированного напряжения будет определяться по формуле: NΦ/dt (Закон Фарадея), где N – количество витков катушки. Это напряжение имеет ту же частоту, что напряжение первичной обмотки.

    Видео: технические характеристики трансформатора напряжения НАМИ 6

    Типы трансформаторов

    В зависимости от использования, конструкции и мощности существуют такие виды трансформаторов, рассмотрим каждый класс подробно:

    1. Автотрансформатор (от от 0,3 до 6 кВт) имеет одну обмотку с двумя концевыми клеммами, а также один или более терминалов в промежуточных точках трансформатора, в котором размещены первичные и вторичные катушки. Чаще всего это однофазный трансформатор напряжения. Представлен маркой ОСМ;
    2. Трансформатор тока имеет первичную и вторичную обмотку, магнитный сердечник, а также специальные резисторы, оптические датчики, которые помогают ускорять процессы регулировки напряжения. Переменный ток, протекающий в первичной, производит переменное магнитное поле в сердечнике, который затем индуцирует переменный ток в обмотке вторичной цепи. Главной целью устройства трансформации является обеспечение первичной и вторичной цепей и уравнение их сигналов, так чтобы во вторичной цепи ток был линейно пропорционален первичному току. Для этого провода устройства соединяют в разомкнутый треугольник. На рисунке изображена а) схема трансформатора; б) диаграмма векторная; в)диаграмма векторов идеального трансформатора. Фото – Диагармма
    3. Силовой трансформатор – это электрический прибор, который передает ток между двумя контурами при помощи электромагнитной индукции. В свою очередь эти высоковольтные трансформаторы бывают понижающие, повышающие, масляные и сухие. НТС, НТМИ, НКФ, СРА, СРВ, ТМГ, ТСЗИ, ABB, ОМ-0,63 до 160 КВА не может работать с постоянным током, хотя, когда он подключен к источнику постоянного тока, трансформатор обычно дает краткий выходной импульс, во время подъема напряжения. Фото – Силовой трансформатор
    4. Трансформатор антирезонансного типа – литые устройства с полузакрытой структурой и хорошей тепловой изоляцией. Этот прибор может быть трёхфазный, однофазный. По принципу действия практически не отличается от силового трансформатора, но имеет небольшие размеры, хорошо подходит для всех видов климатических условий. Это серии НАМИТ, НАМИ, ВАВИН. Антирезонансные приборы используются в условиях сильных нагрузок или передачи сигналов на большие расстояния.
    5. Заземляемые трансформаторы (или догрузочные) – устройства специального назначения, главной особенностью которых являются обмотки, соединенные между собой звездой или зигзагом. Они используются, чтобы позволить три провода (дельте) многофазной системы соединяться с фазой и нейтралью нагрузок, обеспечивая обратный путь для тока в нейтрали. Заземление трансформаторов часто включают одну обмотку трансформатора с зигзагообразной конфигурацией, но иногда работает при помощи соединения звезда-треугольник из выделенных обмоток трансформатор, чаще всего применяются для подключения счетчика. Представлены моделями ЗНОЛ, НОЛ, НОМ, ЗНОЛП, ЗНОМ. Фото – Заземляемый трансформатор
    6. Пик-трансформаторы используются для сопоставления импульсных источников и нагрузки, с целью изменить полярность импульса, чтобы отделить постоянный и переменный токи, добавить сигналы. Чаще всего используются в компьютерных системах, радиосвязи. У них упрощенная конструкция: вокруг ферримагнитного сердечника расположена обмотка с определенным количеством витков. Он защищает чувствительные устройства от замыкания, сейчас используется редко, его могут заменить предохранители или частотный стабилизатор. Это идеальные приспособления для защиты электрической сети частного дома, если позволяют характеристики определенной модели;
    7. Домашний разделительный трансформатор используется для передачи электрической энергии от источника переменного тока к оборудованию или устройству, при этом блокируя передаточные способности источника питания. Бытовые разделительные трансформаторы 220 220 вольт обеспечивают гальваническую развязку, регулирование напряжения, и чаще всего используются для защиты от поражения электрическим током, для подавления электрических помех на чувствительных устройствах или передачи энергии между двумя не подключенными контурами. Этот вид преобразователей способен блокировать передачу постоянного тока от одной схемы к другой, но при этом пропуская переменный ток. На его проверке используется напряжение короткого замыкания трансформатора (до 10 кВ, для более мощных приборов возможны показатели до 110 кВ).

    Обслуживание и ремонт

    Мы не рекомендуем своими руками чинить сложные электрические приспособления. Единственно, что можно исправить без необратимых последствий – это перемотать обмотку трансформатора.

    Фото – Схема строения трансформатора

    Рассмотрим пример многократной обмотки трансформатора. Здесь три катушки индуктивности, они имеют общий магнитный сердечник, которые объединяет их при помощи магнитной связи. Отношение коэффициента витка обмотки и коэффициента напряжения сохраняются в данной конструкции для нескольких пар катушек. Вероятнее всего, в таких конструкциях одна обмотка является понижающей, а другая – повышающей. Такой трансформатор-регулятор должен для нормальной работы иметь определенное количество витков, поэтому предварительно прочитайте инструкцию к прибору.

    Рассмотрим, как проводится поверка трансформатора:

    1. Осмотрите трансформатор визуально. В большинстве случаев перегрев вызывает выпуклость некоторых участков корпуса;
    2. Определение входа и выходы трансформатора. Первый электрический контур, который генерирует магнитное поле, должен быть подключен к первичной обмотке трансформатора, туда и подается напряжение. Вторая схема, которая получает питание от магнитного поля, должна быть подключена к вторичной обмотке трансформатора.
    3. Определите фильтрации выходного сигнала фазы. Она является общей для подключения конденсаторов и диодов на вторичной обмотке трансформатора и формирует сетевое переменное питание в постоянный ток.
    4. Подготовьте прибор для измерения напряжения. Удалить крышки и панели, чтобы получить доступ к схемам и проводникам. При помощи мультиметра нужно измерить напряжение устройства;
    5. Подайте питание на схемы. Используйте мультиметр в режиме переменного тока для измерения первичной обмотки трансформатора. Если измерение меньше, чем 80 процентов от ожидаемого напряжения, неисправность может находиться в любом места трансформатора или схемы, которые обеспечивают контакт первичной обмотки с питанием сети. В этом случае первичная обмотка должна быть отделена от подачи электроэнергии. Если потребляемая мощность (не отключая обмотку) поднимается к ожидаемому значению, то трансформатор работает плохо. Если потребляемая мощность не подходит и близко к ожидаемому значению, то проблема заключается не в трансформаторе, а во входной цепи;
    6. Измерьте вторичный выход преобразователя. Если Вы определили, что нет фильтрации, то используйте режим питания от мультиметра. Возможно, понадобится переключить прибор на постоянный ток. Если ожидаемого напряжения нет на вторичной обмотке, то либо трансформатор не работает, либо какая-то проблема с выходными клеммами. Проверьте их по отдельности.

    До включения устройство полностью собирается, еще раз проверяется на точность. Желательно также проконсультироваться у электрика. Монтаж также должен осуществляться при помощи специалиста.

    Для того чтобы купить трансформатор напряжения, мы советуем обратиться в профессиональный магазин, там Вы сможете просмотреть каталог, изучить прайс-лист, выбрать нужную модель, получить на неё гарантию, а также подробные ответы специалиста на все интересующие вопросы. Широкий выбор трансформаторов представлен в сети Интернет. Стоимость на небольшой трансформатор средней мощности в России, Украине, Беларуси и странах СНГ колеблется в пределах от 20 000 рублей до 50 000. Цена может значительно уменьшаться при оптовых закупках.

    FILED UNDER : Справочник

    Submit a Comment

    Must be required * marked fields.

    :*
    :*