admin / 31.05.2019

Ингибиторы коррозии

Химические различия

  • Летучие ингибиторы (бензонаты, фосфаты, нитриты и др.) – эффективное средство защиты при атмосферной коррозии. Принцип действия довольно прост: химическое соединение образует пары, которые проникают через слой воздуха к обрабатываемой поверхности и, адсорбируясь, защищают ее.
  • Органические вещества — адсорбция происходит только на металлических поверхностях. Применяются в основном для кислотного травления металла и для его очистки от окалины, ржавчины, накипи. Чаще всего органические ингибиторы — это ароматические амины или алифатические соединения, в составе которых имеется сера, азот и кислород. Как правило, к этой группе относятся ингибиторы кислотной коррозии, которые при относительно малых концентрациях (~5 г/л) способны задержать процесс распада в кислотной среде.
  • Неорганические – многие неорганические вещества обладают способностью замедлять коррозионные процессы в агрессивных средах, ингибирующее воздействие таких соединений вызвано наличием в них анионов или катионов. К данной группе относятся: фосфаты, силикаты, нитрит и нитрат натрия.

Ингибиторы коррозии в антигололедных реагентах

Основной тип ингибиторов коррозии, применяемых при создании антигололедных реагентов, имеет адсорбционное действие. Механизм действия ингибиторов коррозии определяется их адсорбционными и гидрофобными свойствами. Малорастворимые ингибиторы коррозии вытесняют с поверхности металла воду, образуя при этом адсорбционную гидрофобную пленку, которая не пропускает воду и не разрушается ею; химическая коррозия не развивается в связи с тем, что малорастворимый ингибитор коррозии химически инертен к металлу, соответственно, чем прочнее пленка на поверхности, тем выше защита металла от коррозии.

Наиболее эффективными веществами, замедляющими коррозию, в случае с антигололедными средствами являются соединения, не только проявляющие ингибирующее действие, но и плавящие снежно-ледяные отложения. С точки зрения химии, наиболее распространенными соединениями данного типа являются соли жирных органических кислот.

Самые первые представители в данном ряду – формиаты. Неплохой плавящей способностью, а также возможностью применения при низких температурах отличаются также ацетаты, но они, взаимодействуя с водой, выделяют уксусную кислоту и в результате обладают специфическим запахом. По этой причине ацетаты в населенных пунктах не используются.

В то же время формиаты не обладают запахом, быстро разлагаются на углекислый газ и воду, имеют высокую плавящую способность и низкую коррозионную активность. При добавлении антигололедные смеси, формиат проявляет ингибирующие свойства и снижает их коррозионную активность, при этом реагент сохраняет высокую плавящую способность.

ГК «ВВ-Строй» предлагает антигололедные реагенты АКВАЙС -25° С, АКВАЙС-Эконом, АКВАЙС-Бишофит, АКВАЙС -31°С, АКВАЙС-Пешеход, в составе которых содержится ингибитор коррозии, обладающий всеми необходимыми качествами.

Классификация ингибиторов по механизму действия

Принцип и характеристики образования защитной среды обуславливаются химической природой конкретной рецептуры. В этом смысле отмечаются следующие группы составов с антикоррозийным эффектом:

  • Адсорбционные. На поверхности предохраняемой конструкции или детали образуется мономолекулярная пленка, которая постепенно останавливает негативные электрохимические процессы. Среди таких веществ часто встречаются поверхностно-активные композиции — ПАВы.
  • Органические ингибиторы. Представляют средства, дающие смешанный эффект. Они способны тормозить анодные и катодные разрушительные реакции коррозии. Органический ингибитор нередко используется при металлическом травлении, облегчая дальнейшие процессы зачистки поверхностей от загрязнений и окалины. При этом сама структура металла остается прежней и не деформируется.
  • Неорганические ингибиторы. Обширная группа соединений, основанных на фосфатах, силикатах и полифосфатов. Комбинируя элементы химической композиции этого типа, можно получать практически универсальные средства для снижения интенсивности процесса разрушения структуры. Сложность заключается лишь в подборе подходящего активного элемента для конкретных задач.
  • Пассивирующие ингибиторы. Образуют на поверхности заготовки защитную пленку, оказывающую эффект пассивирования. Иными словами, выполняется окислительная реакция (с помощью нитритов и хроматов, к примеру), при которой коррозионный потенциал сводится к положительной неактивной стороне.

Применение ингибиторов в нефтегазовой промышленности

В основном нефте- и газопроводные трубные магистрали подвергаются коррозийным разрушениям, но не только. Металлические конструкции и сооружения перерабатывающих заводов, скважинное оборудование, буровые установки и вспомогательные приспособления постоянно взаимодействуют с сероводородом, двуокисью углерода и органическими кислотами. Очевидно, что и в этом случае необходимо использование специализированных защитных средств. В частности, задействуются ингибиторы коррозии в виде смесей, содержащих серу, азот и метанол. Сужение спектра доступных для использования в данной сфере химически активных антикоррозийных средств обуславливается тем, что ингибиторы не должны никак влиять на технологические процессы нефтегазовых предприятий (добычу, сбор, подготовку, переработку сырья). Кроме этого, они должны иметь приемлемые показатели токсичности по отношению к окружающей среде.

Современные средства защиты материалов от негативных факторов окружающего воздействия все в большей степени ориентируются на тонкие физико-химические реакции и процессы, в результате которых происходят изменения структуры материалов. Именно такой подход в наиболее эффективных моделях защиты демонстрируют ингибиторы. Специальные растворы порой на молекулярном уровне не допускают разрушения металлической поверхности, сохраняя и ее эксплуатационные качества в первоначальном виде. Но есть и другие примеры, среди которых пеназолин (ПАВ) – ингибитор коррозии, оказывающий двойное поверхностное действие. Как и традиционные антикоррозийные покрытия, он формирует грубую густую пленку, физически не позволяющую агрессивным средам воздействовать на металл. То есть практически для любых условий с риском коррозийного поражения современная промышленная химия может предложить достойное средство защиты – остается лишь правильно рассчитать свойства состава и обозначить требования к его применению.

Промысловый трубопровод

ПРОМЫСЛОВЫЙ ТРУБОПРОВОД (а. field pipeline; н. Feldrohrleitung; Feldleitung; ф. соnduite de chantier, tuyauterie de chantier; и. tuberia de explotaciones petroleras, соnducto de explotacines petroleras) — система технологических трубопроводов для транспортирования нефти, конденсата, газа, воды на нефтяных, нефтегазовых, газоконденсатных и газовых месторождениях. Подразделяются: по назначению — нефте-, газо-, нефтегазо-, нефтегазоводо-, конденсато-, ингибиторо- и водопроводы; по величине рабочего давления — высокого (6,4 МПа и выше), среднего (1,6 МПа) и низкого (0,6 МПа); по способу прокладки — подземные, надземные, наземные, подводные; по гидравлической схеме работы — простые, не имеющие ответвлений, и сложные — с ответвлениями, к последним относятся также замкнутые (кольцевые) трубопроводы; по характеру напора — напорные и безнапорные. Различают промысловые трубопроводы с полным заполнением сечения трубы жидкостью (напорные) и с неполным заполнением сечения трубы жидкостью, которые могут быть как безнапорными, так и напорными.

Промысловые трубопроводы на нефтяных месторождениях (промысловые нефтепроводы) подразделяются на выкидные линии, нефтяные сборные коллекторы, промысловые газопроводы для сбора нефтяного газа, промысловые ингибиторопроводы, промысловые водопроводы.

Выкидные линии служат для транспортировки нефти и её примесей от скважины до групповой замерной установки. Диаметр выкидных линий в зависимости от дебита скважин 75-150 мм, протяжённость определяется технико-экономическими расчётами и может достигать 4 км и более.

Нефтяные сборные коллекторы прокладываются для транспортировки нефти от групповой замерной установки до дожимной насосной станции или до установки подготовки нефти. Диаметр нефтяных сборных коллекторов 100-350 мм, протяжённость достигает 10 км и более.

Реклама

Различают нефтепроводы самотёчные (нефть движется под действием гравитационных сил, обусловленных разностью вертикальных отметок в начале и конце трубопровода), напорно-самотёчные (в нефтепроводе движется только нефть, газовая фаза отсутствует) и свободно-самотёчные, или безнапорные (нефть и газ движутся раздельно). В промысловой практике часто встречаются самотёчные промысловые трубопроводы, в которых присутствуют одновременно свободно-самотёчные и напорно-самотёчные участки.

Увеличение пропускной способности нефтяных сборных коллекторов, вызванное подключением новых или увеличением производительности старых скважин, достигается уменьшением вязкости перекачиваемой нефти путём её подогрева; вводом в поток обводнённой нефти ПАВ; прокладкой параллельного нефтяного коллектора (лупинга); параллельным подключением дополнительного насоса к основному.

Промысловые газопроводы для сбора нефтяного газа — газопроводы, работающие при давлении газа выше атмосферного, и вакуумные газопроводы. В 80-х гг. 20 века повсеместно перешли на сооружение герметизированных напорных систем нефтегазосбора (вакуумные газопроводы на новых месторождениях не проектируют). По назначению промысловые газопроводы для сбора нефтяного газа подразделяют на подводящие газопроводы (аналогичны выкидным линиям промысловых нефтепроводов), сборные коллекторы (аналогичны нефтяным сборным коллекторам) и нагнетательные газопроводы. Форма газосборного коллектора зависит от конфигурации площади месторождения, размеров залежи и размещения групповых замерных установок или дожимных насосных станций. Газосборная система на нефтяном промысле называется в соответствии с формой газосборного коллектора: линейной (коллектор представляет собой одну линию), лучевой (коллекторы сходятся в виде лучей к единому пункту) и кольцевой (коллектор огибает всю площадь нефтяной структуры в виде кольца; для большей надёжности работы и большей манёвренности в кольцевом коллекторе делают одну или две перемычки). Нагнетательные газопроводы служат для нагнетания газа от компрессорных станций в газовую шапку месторождения с целью поддержания пластового давления и продления срока фонтанной эксплуатации нефтяных скважин; для подачи газа через газораспределительные будки к устьям скважин, эксплуатируемых компрессорным способом; для транспортировки газа на газоперерабатывающие заводы или газофракционирующие установки потребителям.

Промысловые ингибиторопроводы служат для подачи ингибиторов и других химических реагентов в скважины и на другие объекты обустройства нефтяных, нефтегазовых, газовых и газоконденсатных месторождений.

Промысловые водопроводы предназначены для подачи воды к нагнетательным скважинам с целью поддержания пластового давления и для сбора пластовых вод, добытых вместе с нефтью, в водоносные горизонты. Подразделяются на магистральные, начинающиеся у насосных станций второго подъёма; подводящие, соединяющие магистральные водопроводы с кустовыми насосными станциями; разводящие, соединяющие кустовые насосные станции с нагнетательных скважинами.

Промысловые трубопроводы на газовых и газоконденсатных месторождениях (промысловые газопроводы) служат для соединения газовых скважин с технологическими установками подготовки газа к транспортировке и промысловыми газораспределительными станциями, через которые газ поступает в магистральные газопроводы, а также для сбора и утилизации газового конденсата. Промысловые газопроводы подразделяются на шлейфы-газопроводы, газосборные коллекторы-газопроводы, конденсатосборные коллекторы и промысловые водопроводы.

Промысловые шлейфы-газопроводы соединяют газовые скважины с установками сепарации и осушки газа, групповые установки подготовки газа к транспортированию, отдельные пункты сепарации газа с промысловыми газосборными коллекторами. Длина шлейфов (600 м — 5 км), диаметры до 200 м.

Промысловые газосборные коллекторы-газопроводы соединяют групповые установки подготовки газа к транспортированию с промысловыми газораспределительными станциями. Форма газосборных коллекторов аналогична форме промысловых газопроводов, используемых на нефтяных месторождениях.

Промысловые конденсатосборные коллекторы (аналогичны промысловым нефтесборным коллекторам на нефтяных месторождениях) применяются для транспортировки выделенного на групповых установках подготовки газа к транспортированию конденсата на промысловый газосборный пункт или на газобензиновый завод.

Промысловые трубопроводы аналогичны промысловым водопроводам, применяемым на нефтяных месторождениях.

Ингибитор коррозии металлов в соляной и серной кислотах

Изобретение относится к защите металлов от коррозии в кислых средах с помощью ингибиторов и может быть использовано в травильных растворах и при кислотных очистках оборудования. Ингибитор содержит, мас.%: М-нитробензаль-п-аминофенол 19,2-16,2; диметилфенилнониламмоний иодид 26,9-29,4; 3-оксипиридазон-6 15,4-11,8; уротропин 38,5-42,6. Ингибитор тормозит коррозию стали, никеля и кобальта, обеспечивает значительное снижение наводороживания стали. 2 табл.

Изобретение относится к области торможения коррозии и защиты металлов с помощью введения в кислотные среды ингибиторов коррозии и может быть использовано при травлении металлов в машиностроении и при кислотных очистках оборудования.

Известно применение уротропина в качестве ингибитора кислотной коррозии металлов. Однако уротропин довольно слабо защищает сталь и особенно слабо никель и кобальт от коррозии в кислотных растворах. К тому же уротропин применяется в весьма высоких концентрациях — до 2% (Алцыбеева А.И., Левин С.З. Ингибиторы коррозии металлов. — Л.: Химия, 1968, с.28-29). Наиболее близким к предлагаемому решению по технической сущности и достигаемому результату является известный ингибитор — продукт конденсации капринового альдегида с анилином (Трубини В.Г. и Ключников Н.Г. «Защита стали от коррозии в соляной кислоте продуктами конденсации аминов и альдегидов». Сборник статей: «Ингибиторы коррозии металлов», ЦНИИ технологии судостроения, изд. «Судостроение», 1965, с.124-129). Известный ингибитор защищает сталь от коррозии в соляной кислоте лучше, чем уротропин, однако в этом случае степени защиты от коррозии недостаточно велики, составляя 92,07 в 3 н., 95,50 в 5 н. и 97,29% в 7 н. соляной кислоте. Для никеля и кобальта защита от коррозии еще менее эффективна. Ингибитор слабо защищает сталь от наводороживания. При разработке данного изобретения была поставлена задача создания ингибитора коррозии, который в кислотах защищал бы не только сталь, но и никель и кобальт, а также снижал бы наводороживание стали. Предполагалось, что оба защитных эффекта можно получить путем подбора смеси компонентов, усиливающих действие друг друга. Эффективность предлагаемого ингибитора, как минимум, должна превышать эффективность прототипа. Для решения поставленной технической задачи в растворы соляной и серной кислот предлагалось вводить ингибитор коррозии, представляющий собой смесь продукта конденсации амина с альдегидом, производного пиридазона, соли четвертичного замещенного аммония и уротропина. При этом конкретно были взяты м-нитробензаль-п-аминофенолВ состав ингибитора перечисленные компоненты входят в следующих концентрациях, мас.%: М-нитробензаль-п-аминофенол — 16,2-19,2 3-оксипиридазон-6 — 11,8-15,4 диметилфенилнониламмоний иодид — 26,9-29,4 уротропин — 38,5-42,6
При приготовлении ингибиторных растворов кислот в первую очередь в соответствующую кислоту вводят продукт конденсации, затем 3-оксипиридазон-6 и тщательно перемешивают раствор, затем добавляют в него два оставшихся компонента. Для упрощения расчетов можно рекомендовать добавлять компоненты, взятые в концентрациях в виде, г/л:
М-нитробензаль-п-аминофенол — 0,5-1,1
3-оксипиридазон-6 — 0,4-0,8
диметилфенилнониламмоний иодид — 0,7-2,0
уротропин — 1,0-2,9
Результаты коррозионных испытаний металлов и опытов по наводороживанию стали приводятся в таблицах 1 и 2, а также в примерах. Торможение коррозии изучалось гравиметрическим и объемным методами наводороживание — по скручиванию стальных образцов до излома на крутильной машине K-5. ПРИМЕР 1. Опыты проводились на стали с 500 я/л 5 соляной кислоты при 201 и 901oС (температура поддерживалась с помощью жидкостного термостата). Ингибитор брался в концентрации 6,8 г/л (т.е. 3,42 на 500 мл кислоты). Концентрации компонентов составляли: продукт конденсации 16,2 мас.% (т.е. 0,55 г на 500 мл), 3-оксипиридазон-6 11,8 мас.% (0,4 г/л на 500 мл), диметилфенилнониламмоний иодид 29,4 мас.% (1,02 на 580 мл), уротропины 42,6 мас. % (1,45 г на 500 мл). Образцы (трехкратная повторность) имели размер 40 х 25 х 1 мм, предварительно зачищались тонкой наждачной шкуркой, обезжиривались ацетоном, выдерживались 2 часа в эксикаторе над хлоридом кальция и взвешивались на аналитических весах. После опыта образцы тщательно промывались, протирались бумажной салфеткой, выдерживались в эксикаторе и вновь взвешивались на аналитических весах. Вычисленная по изменению массы образцов скорость коррозии составила:
при 20oС без ингибитора 9,2510-4 г/дм2час,
с ингибитором 4,62510-6 г/дм2час
(продолжительность опыта 62 часа),
при 90oС без ингибитора 23,29 г/дм2час,
с ингибитором 9,310-2 г/дм2час
(продолжительность опыта 0,5 часа). Соответственно коэффициенты торможения и степени защиты составляют при 20oС 200 и 99,5%; при 90oС 250 и 99,6%. Во второй серии были измерены скорость коррозии для отдельных компонентов ингибиторы, которые брались в указанных ранее концентрациях. Вычислялись коэффициенты торможения, которые оказались равны:
для продукта конденсации — 2,9
для 3-оксипиридазона-6 — 2,5
для диметилфенилнониламмония иодида — 2,3
для уротропина — 2,6
Теоретический коэффициент торможения должен был бы равняться 43,3. В действительности он почти в 5 раз больше, что свидетельствует о синергитическом характере усиления взаимного действия компонентов предлагаемого ингибитора. К аналогичному выводу можно прийти и на основе поляризационных измерений: отдельные компоненты вызывают изменение потенциалов на 20-45 мВ, предлагаемый ингибитор на 90 мВ для анодного процена и 120 мВ — для катодного. При определении наводороживания были получены следующие средние величины числа оборотов образца до излома (5-10 повторностей):

нетравленный образец — 56 оборотов (N0)
травленные с ингибитором 20,9 (N1)
травленные в чистой кислоте 2,1 (N2)
Находим разности числа оборотов
N1 = N0-N2 = 53,9,
N2 = N0-N1 = 35,1,
отсюда вычисляется коэффициент наводороживания К=53,9/35,1=1,536. Затем рассчитываем степень защиты от наводороживания
. Аналогичные опыты, проведенные с известным ингибитором, дали результаты:
степень защиты от коррозии 96,3% (К=27);
степень защиты от наводороживания 9% (концентрация ингибитора 6,8 г/л). ПРИМЕР 2. Испытывались предлагаемый и известный ингибиторы при защите от коррозии никеля в 5N серной кислоте при 90oС. Ингибиторы брались в тех же концентрациях, что и в опыте 1. Опыт длился 1 час. Для предлагаемого ингибитора получили коэффициент торможения коррозии 4,7 и степень защиты 78,7%. В опытах с отдельными компонентами предлагаемого ингибитора получены коэффициенты торможения: продукт конденсации 1,5; 3-оксипиридазон-6 1,2; диметилфенилнониламоний иодид 1,2 и уротропин 1,2. Таким образом теоретический коэффициент торможения составляет 2,6, т.е. почти в 2 раза меньше, чем для предлагаемого ингибитора. Следовательно, и при защите никеля наблюдается синергетическое усиление совмезащитного действия компонентов. С известным ингибитором получена степень защиты никеля, равная 38,1%. ПРИМЕР 3. Испытывалась эффективность предлагаемого и известного ингибиторов для торможения коррозии кобальта. Опыт проводился по той же программе, как и в случае изучения коррозии в примере 2, но при концентрации ингибитора 4,6 г/л (для известного ингибитора 5 г/л). Коэффициент торможения коррозии предлагаемым ингибитором составляет 4,8. Для отдельных компонентов коэффициенты имели следующие величины: продукт конденсации 1,3, для 3-оксипиридазона-6 1,2, для диметилфенилнониламоний иодида 1,3, для уротропина 1,1. Теоретический коэффициент торможения составляет 2,2, т.е. он уступает экспериментальной величине более чем в 2 раза. Степень защиты предлагаемого ингибитора для кобальта 79,2%, для известного ингибитора 31,5%. Сравнение показателей, приведенных в таблицах 1 и 2 и примерах, свидетельствует о превосходстве предлагаемого ингибитора перед известным по торможению коррозии для стали, никеля и кобальта. Еще значительней выражено преимущество предлагаемого ингибитора по наводороживанию стали. Опыты, проведенные дополнительно, показали, что предлагаемый ингибитор более эффективно защищает от кислотной коррозии сталь, чем широко применяемый в производственной практике ПБ-5 (для первого коэффициент торможения равен 100, а для известного только 44). Кроме того, в отличие от ПБ-5 предлагаемый ингибитор не коагулирует при накоплении ионов железа в травильной ванне. Положительный эффект предлагаемого ингибитора объясняется синергизмом совместного действия компонентов, входящих в состав ингибитора. Предлагаемый ингибитор может быть рекомендован для травления стали, никеля и кобальта, а также для кислотных очисток оборудования в энергетике и пищевой промышленности.

Формула изобретения

Ингибитор коррозии металлов в соляной и серной кислотах, содержащий продукт конденсации амина с альдегидом, отличающийся тем, что он дополнительно содержит диметилфенилнониламмоний иодид, 3-окспиридазон-6, уротропин, а в качестве продукта конденсации м-нитробензаль-п-аминофенол при следующих концентрациях компонентов, мас. %:
М-нитробензаль-п-аминофенол — 19,2-16,2
Диметилфенилнониламмоний иодид — 26,9-29,4
3-оксипиридазон-6 — 15,4-11,8
Уротропин — 38,5-42,6

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5

Химический способ предупреждения отложения неорганических солей

Применение ингибиторов при добыче нефти остается приоритетным направлением для предотвращения солеотложений.

В зависимости от механизма действия ингибиторы солеотложений условно можно разделить на следующие три типа:

хелаты — вещества, способные связывать солеобразующие катионы и препятствовать их взаимодействию с солеобразующими анионами;

ингибиторы «порогового» действия, добавление которых в раствор препятствует зарождению и росту кристаллов солей;

кристаллоразрушающие ингибиторы, не препятствующие кристаллизации солей, а лишь видоизменяющие форму кристаллов.

В основе механизма действия ингибиторов солеотложения лежат адсорбционные процессы. Адсорбируясь на зародышевых центрах солевого соединения, ингибиторы подавляют рост кристалла, видоизменяют его форму и размеры, препятствуют прилипанию друг к другу, а также ухудшают адгезию кристалла к металлическим поверхностям. В качестве химических реагентов, препятствующих кристаллизации малорастворимых неорганических солей эффективно используются комплексоны.

Ниже приводятся характеристики и условия применения наиболее используемых в отечественной нефтепромысловой практике ингибиторов предотвращения моносолей и солевых осадков сложного состава.

Отечественные ингибиторы предотвращения отложения неорганических солей

Однокомпонентные ингибиторы

ГМФН — гексаметафосфат натрия представляет неорганический полифосфат анионного типа и является бесцветным порошкообразным веществом с хорошей растворимостью в воде.

Используется для предотвращения отложений кальцита и гипса в скважинах и наземных коммуникациях при содержании ионов кальция и магния в воде до 1000 мг-экв/л.

ГМФН является замедлителем процесса солеобразования, адсорбируясь на поверхности микрокристаллов и прекращая их рост.

ТПФН — триполифосфат натрия представляет неорганический полифосфат. В товарном виде — это белый порошок с формой применения 1-5% ного водного раствора.

Область применения при ингибировании кальцита и гипса с содержанием ионов кальция и магния в воде до 1000 мг-экв/л. Дозировка ТПФН составляет в пределах 10-20 г./м3.

Недостатком полифосфатов является малая термостабильность. При температуре выше 500С они гидролизуются и переходят в ортофосфаты, которые образуют с ионами кальция осадки. Кроме того, при попадании в открытые водоемы полифосфаты стимулируют развитие синезеленых водорослей.

ИСБ-1 (НТФ) — комплексон в виде нитрилотриметилфосфоновой кислоты.

Предназначен для предупреждения сульфатно- и карбонатно-кальциевых отложений. Ингибитор получил широкое распространение в отечественной практике нефтедобычи.

Продукт представляет кристаллический порошок, хорошо растворимый в воде, кислотах, щелочах. Ингибитор совместим с минерализованными водами (0,1-5% раствор в пресной воде совместим с водой, содержащей до 16 г./л ионов кальция) и обладает различными адсорбционно-десорбционными свойствами в зависимости от адсорбента.

ОЭДФ (оксиэтилидендифосфоновая кислота) — образует прочные комплексы с большим числом катионов, в том числе со щелочноземельными и предназначены для предупреждения отложений неорганических солей. Представляет собой белый кристаллический порошок, хорошо растворимый в воде, кислотах, спиртах.

Реагент используются для предупреждения отложений неорганических солей в ПЗС, оборудовании, в системе подготовки нефти и воды.

В нефтепромысловой практике для предупреждения отложений солей на основе ОЭДФ (1,1 — оксиэтилидендифосфоновой кислоты) используется раствор с 15-18% концентрацией активного вещества. Ингибитор хорошо растворим в пресной и минерализованной воде, имеет температуру схватывания минус 50 0С и вязкость при минус 40 0С — 800 мПа*с. Ингибитор не оказывает отрицательного влияния на процесс обезвоживания и обессоливания нефти и ее товарные качества, а также при наличии в попутнодобываемой воде в количестве 1-200 г./т на 30-70% снижается коррозия оборудования.

ПАФ-1 — хелатообразующий агент предназначен для предупреждения отложений карбоната и сульфата кальция в нефтяных скважинах и системы подготовки нефти и воды и представляет водный раствор темно-коричневого цвета с содержанием 22% основного вещества. Реагент хорошо растворим в воде и нерастворим в нефти и органических растворителях.

Реагент вводится путем разовой закачки в призабойную зону скважины, периодическим дозированием в затрубное пространство скважины и комбинированным способом. В зависимости от интенсивности отложения солей водные растворы ПАФ-1 при концентрации 0,1-1% применяются при дозировании 10-15 г./м3 обрабатываемой воды. При первичной задавке ингибитора в ПЗС минимально допустимый расход реагента рекомендуется 60 кг. В практике используются 22-26% водные растворы солей данной кислоты, нейтрализованные щелочью до рН = 5-6.

ПАФ-13 — однозамещенная натриевая соль на основе полиэтилен-полиамин-метилфосфоновой кислоты представляет расслаивающуюся жидкость, с нерезким запахом. Реагент обладает высокой эффективность при обработке газлифтных скважин. Дозировка для предотвращения отложений сульфата кальция составляет 10 г./м3, карбоната кальция — 15 г./м3 обрабатываемой воды.

Гипан — гидролизованный полиакрилонитрл используется в гелеобразном виде для предупреждения отложений кальцита.

Оптимальная дозировка 5-10 г./м3. Рабочие растворы готовятся в концентрации 0,05-0,1% в количестве для дозирования в течение 7-10 суток. Растворы готовятся с помощью оборудования реагентных блоков установки подготовки нефти. Перед нагнетанием реагента в емкость смешивания (наполовину заполненную пресной водой) его перемешивают с подогревом не ниже 90 0С. При этом на прием насоса одновременно подается пресная вода. В емкости смешивания раствор перемешивается насосом с подачей сжатого воздуха. Реагент рекомендуется применять в системе подготовки нефти и воды и при промывке скважин.

Хлористый аммоний — используется для предупреждения карбонатных солей в системе подготовки нефти. Химический реагент способствует разложению бикарбоната кальция при температуре ниже (36 0С), чем температура превращения его в трудно растворимый кальцит (45-50 0С). Реагент может использоваться также для растворения уже образовавшегося карбоната кальция. Реагент вводится порциями по 10 кг на прием циркуляционного насоса через каждые 15 минут.

Окисленный лигнин применяется для предотвращения отложений кальцита и гипса в растворах, содержащих до 1000 мг-экв/л ионов кальция и магния. Ингибитор применяется в виде водных растворов в пресной воде.

Подготовка реагента осуществляется в следующей последовательности:

заполняется мешалка пропеллерного или турбинного типа на 2/3 объема нагретой до 80-90 0С пресной водой;

при включенной мешалке засыпается окисленный лигнин из расчета 50-100 кг на 1 кубический метр воды;

после 30 минутного перемешивания смесь с помощью насоса перекачивается в емкость объемом 30-100 м3, которая обогревается паровым подогревателем и оснащается приспособлением для подачи и равномерного распределения сжатого воздуха, а также устройством для отбора раствора;

смесь перемешивается в емкости барботированием воздуха в течение 5-10 мин;

циклы повторяются до получения раствора требуемой концентрации (1-3%) в необходимом количестве.

При отсутствии мешалки рабочий раствор может приготавливаться путем растворения окисленного лигнина непосредственно в емкости при длительном (3-4 часа) барботированием воздухом и подогреве смеси до 80 0С.

Накопленный на дне емкости нерастворимый осадок реагента удаляется путем заполнения емкости подогретой водой с добавлением 1,5% соды. Объем промывочной воды (V) рассчитывается по формуле:

V = A x P / C

где: А — количество соды, необходимой для растворения одной тонны окисленного лигнина (0,21 т);

С — содержание соды в 1 м 3 воды (15 м3);

Р — количество окисленного лигнина, израсходованного для приготовления рабочего раствора в емкости.

Содовый раствор перемешивается в течении 5-6 часов, затем емкость доливается водой и раствор вновь перемешивается в течение 30 мин. Полученный подобным образом раствор может использоваться в качестве ингибирующего с дозировкой, меньшей в 2-3 раза по сравнению с раствором реагента без соды.

Полиакриламид (ПАА) — для предотвращения отложения солей рекомендуется применять гидролизованный ПАА с содержанием в водном растворе 10-60 г./м3. Применение ПАА основано на способности образовывать на поверхности мономолекулярную пленку. Применение ПАА ограничивается содержанием в пластовой воде ионов кальция и магния до 200 мг-экв/л.

Композиционные ингибиторы

Большое распространение для предотвращения отложений солей при добычи нефти получили композиционные составы с повышенной адсорбционно-десорбционной способностью на поверхности пород призабойной зоны, главным образом, на основе комплексона НТФ.

Ингибирующая композиция с массовым содержанием компонентов:

Ингибитор (НТФ), % ………………………………………….55-60

Латекс (сухой остаток), % …………………………………….3-5,5

Нефть, % ……………………………………………………13,32-27,12

ПАВ, %………………………………………………………….. 0,4-1,35

Вода ……………………………………………………………остальное.

Композиция предназначена для предотвращения солевых отложений, главным образом, сульфатно-кальциевых, в скважинах с низкой проницаемостью пласта-коллектора и невысоким пластовым давлением.

Композиция вводится в интервал перфорации эксплуатационной колонны скважины при ее ремонте с помощью трубчатого контейнера по схеме на рис. 8

Рис. 8. Схема применения ингибирующей композиции в скважине контейнерным способом: 1 — контейнер с композицией; 2 — зона выпадения солей

Приготовление композиции осуществляется путем эмульгирования 1,5-15% латекса, 33-62% нефти и 1-3% ПАВ. Остальное количество составляет вода с учетом входящей в состав латекса. В полученную эмульсию при перемешивании постепенно вводится ингибитор (нитрило-триметилфосфоновая кислота).

Особенностью композиции является стабильность ингибирующих свойств в течение продолжительного времени в процессе эксплуатации скважины.

Композиция основана на увеличении поверхности адсорбента за счет гидрофилизации пор пласта коллектора, смоченных нефтью. Входящий состав композиции оксидат, растворяясь в нефти, снижает поверхностное натяжение и увеличивает адсорбцию на поверхности породы.

Целесообразная концентрация оксидата (30-40%) в составе композиции определена, исходя из наименьшего поверхностного натяжения на границе «нефть — ингибирующий раствор» при максимальном содержании в нем НТФ до 5%, что рекомендуется при задавке ингибитора в пласт. При концентрации НТФ в составе композиции свыше 18% защитный эффект от солеобразования снижается. Особенность ингибирующего состава с оксидатом в том, что наряду со снижением коррозионной активности усиливается адсорбционно-десорбционная способность ингибитора, а следовательно, продолжительность его действия (рис. 9).

Способ применения ингибирующей композиции путем продавки в призабойную зону скважины по обычной технологии.

Рис. 9. Адсорбция и десорбция ингибирующих композиций на основе НТФ 1-5% НТФ с оксидатом; 2-5% НТФ с соляной кислотой.

Подбор ингибиторной защиты скважин и оборудования

Различные геолого-физические условия залегания нефти и особенности разработки залежей требуют подбора ингибиторов предупреждения отложения солей применительно к данному технологическому процессу. Ингибиторы должны отвечать определенным требованиям: совместимостью с попутно добываемыми водами, термостойкостью, низкой коррозионной активностью, быть экологически безопасными и т.д. С целью упорядоченного подбора оптимального ингибитора для защиты оборудования от солеобразований в процессе подготовки нефти разработана методика, предусматривающая следующие требования:

по агрегатному состоянию в качестве ингибиторов допускаются только порошкообразные вещества и нерасслаивающиеся жидкости. Не допускается содержание в жидкостях крупновзвешенных и оседающих примесей. Содержание нерастворимых примесей допускается не более 1%;

величина индукционного периода (время появления твердой фазы в перенасыщенном растворе осадкообразующей соли) не должна быть менее 10 минут;

ингибиторная система должна иметь полную совместимость с пластовой водой месторождения без расслаивания и образования осадка;

при обработке нефти месторождения смесью ингибитора и деэмульгатора не должно увеличиваться содержание солей и воды. Ингибитор должен быть совместим с деэмульгатором;

ингибитор считается эффективным, если уменьшение скорости образования осадка на поверхности нагрева превышает 80% при расходе ингибитора не более 10 мг/л;

ингибитор должен быть термостабильным, то есть при нагреве рабочего раствора до 130 0С эффективность действия не должна быть ниже 80%;

выдержанность ингибитора относительно коррозионной активности должна определяться скоростью коррозии стали марки Х18Н9Т и Ст. 3 в рабочем растворе не более 0,05 мм/год.

Подбор ингибиторов в соответствии с вышеперечисленными требованиями производится в лабораторных условиях стандартными методами, однако возможны и нестандартные подходы, требующие определенных исследований, в частности, в области совместимости вод, коррозионной активности, адсорбционно-десорбционных процессов.

При применении отечественных ингибиторов солеотложений приготовление их рекомендуют на пресной воде, а в зимних условиях с добавками антифриза.

Техника и технология применения ингибиторов

Наряду с созданием ингибирующих составов предупреждения отложения солей важное значение приобретают технологические способы их реализации. В зависимости от условий ингибиторы могут применяться по следующей технологии:

  • — путем непрерывной или периодической подачи в систему с помощью специальных дозировочных устройств;
  • — периодической закачкой раствора в скважину с последующей задавкой его в призабойную зону.

Последовательно могут использоваться комбинированные способы подачи ингибитора, например, в начале периодическая закачка, затем — через 2-6 месяцев непрерывная дозировка или периодическая подача раствора ингибитора в затрубное пространство скважины.

В соответствии с общими принципами ингибиторной защиты скважин и оборудования перед реализацией технологии предупреждения солеобразовании на объектах необходимы подготовительные работы.

Шаблонированием или спуском дистанционного измерителя диаметра труб устанавливается наличие осадков, зоны их отложений и состав. Засорение лифта скважин и призабойной зоны может устанавливаться косвенно одновременно со снижением дебита по падению устьевого и повышению рабочего давления, снижению коэффициента продуктивности скважины.

При отложениях производятся работы по восстановлению продуктивности скважин. Для удаления солевых осадков в начальной стадии обычно используется солянокислотные обработки 15-18% концентрацией раствора с добавкой ингибитора кислотной коррозии в концентрации 0,5-1% на объем кислоты.

Скважина выдерживается с соляной кислотой в течение 2 часов. В случае снижения давления на агрегате при выдержке скважины с соляной кислотой ее необходимо периодически подкачивать в НКТ скважины. При повторной обработке скважины соляной кислотой время выдержки берется от 1,5 до 2 часов.

При обработке призабойной зоны количество кислоты определяется в зависимости от толщины пласта и геолого-физических свойств. В среднем, берется от 0,2 до 0,8 м3 раствора кислоты на 1 погонный метр обрабатываемого интервала пласта.

Результаты солянокислотных обработок скважин при всех способах их эксплуатации проверяются шаблонированием, а призабойной зоны — по восстановлению дебита и коэффициента продуктивности.

Дозированная подача ингибитора в скважину считается надежным методом, хотя требует постоянного контроля и обслуживания дозировочных насосов и устройств.

В скважины жидкий ингибитор подается в затрубное пространство по схеме на рис. 10. с обвязкой устья скважины (рис. 11). В скважинах, оборудованных штанговыми глубинными насосами при отложении солей ниже насоса спускается хвостовик из НКТ. Длина хвостовика в зависимости от прочности НКТ определяется их весом.

Реагент обычно подается в виде 5-10% раствора в пресной воде, а в зимнее время из-за низкой температуре ингибитор подается в чистом виде в байпасную линию, через которую в затрубное пространство пропускается часть продукции скважины (до 10%). Расход реагента корректируется в зависимости от изменения дебита скважины по воде и содержания ингибитора в попутнодобываемой с нефтью воде.

Метод дозирования ингибитора применим при отложении солей в подземном оборудовании и трубах подъемного лифта, но при отложении солей в призабойной зоне необходима его задавка в пласт.

В процессе разработки залежи с заводнением находит применение способ подачи ингибитора через систему поддержания пластового давления.

Рис. 10. Схема подачи ингибитора в затрубное пространство скважины

1 — газораспределительная батарея; 2 — скважинная линия с газом высокого давления; 3 — дозировочный насос; 4,5 — манометры; 6 — задвижка выкидной линии; 7,8 — затрубные задвижки; 9 — НКТ; 10,11 — пусковой и рабочий газлифтные клапаны; 12 — циркуляционный клапан; 13 — пакер

Рис. 11. Обвязка устья скважины для дозирования ингибитора предупреждения отложения солей

  • 1 — хвостовик; 2 — штанговый насос; 3 — дозировочный насос;
  • 4 — обводная линия; 5 — выкидная линия; 6 — емкость для ингибитора.

Средствами подачи ингибиторов в скважину являются различной конструкции дозаторы или применяется контейнерный способ для удаления твердых реагентов. При отложении солей в насосных установках, НКТ, устьевой арматуре скважин нашел применение глубинный дозатор с принудительной подачей жидкого реагента.

Периодическая задавка ингибиторов в призабойную зону скважины позволяет предотвращать отложение солей в течение всего периода выноса реагента с продукцией скважины. Периодическую задавку ингибитора в призабойную зону рекомендуется осуществлять в определенной последовательности.

Для фонтанных скважин, сначала открывают задвижку на затрубном пространстве, заменяют жидкость в НКТ на раствор ингибитора и его расчетный объем при закрытой задвижке с продавочной жидкостью задавливается в ПЗС. Давление задавки определяется приемистостью пласта, которое не должно превышать давления опрессовки эксплуатационной колонны скважины. При низкой приемистости и высоком пластовом давлении реагент следует закачивать через НКТ с предварительной установкой пакера. Однако и в данном случае давление закачки реагент не должно превышать давления гидроразрыва пласта. В случае перевода скважины на механизированный способ добычи при задавке раствора ингибитора вслед за продавочной жидкостью скважина глушится раствором необходимой плотностью.

При механизированном способе добычи нефти, когда скважины оборудованы насосами (ШГН, ЭЦН) с обратным клапаном, раствор ингибитора задавливается в затрубное пространство. Жидкость в затрубном пространстве заменяется на раствор ингибитора, закрывается задвижка на напорном трубопроводе насоса и раствор ингибитора с продавочной жидкостью задавливается в пласт. При заполнении затрубного пространства скважины раствором ингибитора необходимо обеспечивать свободный излив жидкости из напорного трубопровода насоса. Для скважин, оборудованных ЭЦН с обратным клапанам, давление на устье затрубного пространства не должно превышать допустимого давления устьевого сальника, а в скважинах с ЭЦН без обратного клапана задавка ингибитора осуществляется через НКТ.

Задавка раствора ингибитора в призабойную зону газлифтных скважин осуществляется по схеме на рис. 14. Предварительно прекращается подача газа высокого давления в скважину путем закрытия задвижки скважинной линии на ГРБ.

Рис. 14. Схема задавки ингибитора в призабойную зону скважины.

  • 1 — газораспределительная батарея (ГРБ); 2 — скважинная линия с газом высокого давления; 3,4 — манометры; 5 — цементировочный агрегат;
  • 6 — задвижка выкидной линии; 7,8 — затрубные задвижки; 9 — лифт;
  • 10,11 — пусковой и рабочий газлифтные клапаны; 12 — циркуляционный клапан; 13 — пакер.

Стравливается газ из затрубного пространства скважины. Зарывается затрубная задвижка 7. Подсоединяется цементировочный агрегат 5 к выкидной линии, производится обвязка устья скважины с цементировочным агрегатом и опрессовывается нагнетательная линия. Осуществляется задавка раствора ингибитора в лифт 9 скважины.

Давление задавки при беспакерном компоновке подземного оборудования не должно превышать давлений опрессовки эксплуатационной колонны и гидроразрыва пласта. При компоновке с пакером и закрытом циркуляционном клапане 12 давление задавки не должно превышать давления опрессовки НКТ, гидроразрыва пласта, максимального перепада давления, воспринимаемого пакером и давления открытия циркуляционного клапана разового действия.

При всех способах эксплуатации скважин после задавки ингибитора в призабойную зону скважину выдерживают в течение 12-24 часов для более полной адсорбции реагента в пористой среде.

Затем скважина осваивается и пускается в эксплуатацию. Контроль содержания ингибитора в попутнодобываемой с нефтью воде должен производиться не реже 2 раз в месяц путем анализа отбираемой жидкости.

Растворы ингибиторов на пресной воде для отечественных реагентов рекомендуются с концентрацией 0,2-1%.

FILED UNDER : Справочник

Страницы