admin / 05.10.2018

Гистерезис

Химический состав стали с улучшенными магнитными характеристиками

Исходя из вышесказанного, повышение содержания кремния в металле снижает удельный вес оксидов железа. Как показывает практика, одновременно с этим происходит рост индукции насыщения Вs железа. Ее максимальная величина достигается при содержании Si на уровне 6.4%.

Однако по химическому составу электротехническая сталь остается легированным металлом с содержанием кремния не более 4.8%. Это связано с ухудшением механических свойств металла, хрупкости в частности, при росте концентрации Si. Наряду с кремнием в электротехническую сталь может добавляться алюминий на уровне 0.5%.

Сердечник трансформатора из электротехнической стали

Исходя из химического состава (содержания легирующих примесей), металл разделяют на две категории динамная и трансформаторная сталь. В первой разновидности процент вхождения кремния составляет 0.8 – 2.5%, тогда как трансформаторное железо характеризуется уровнем легирования 3.0 – 4.5%.

Читайте также: Лом трансформаторов, о том, как сдают трансформаторы в металлолом, и что ценного в них есть.

Изотропная и анизотропная сталь – отличия производства

Как можно понять из вышесказанного, характеристики легированного соединения сильно зависят от содержания кремния. Вторым фактором, определяющим свойства металла, выступает его внутренняя структура, которая формируется в процессе производства. В частности горячекатаная и холоднокатаная стали обладают различными по размеру ячейками. Для крупнокристаллических материалов характерны большие величины магнитной проницаемостью, но коэрцитивная сила существенно ниже, чем у металлов с мелкокристаллической структурой. Варьировать размер зерна позволяют два вида обработки: механическая и термическая.

Так отжиг стали способствует понижению внутренних напряжений в металле, одновременно приводя к увеличению кристаллов, образующих его структуру. Горячая прокатка электротехнической стали не способна создать устойчивую ориентацию зерен внутри металла, оставляя ее хаотичной. Подобная изотропная сталь, как результат, характеризуется независимостью магнитных свойств от направления.

Добиться текстурованной структуры с определенной пространственной ориентацией кристаллов в металле позволяет повторной холодной прокатки стали, сопровождающаяся отжигом при особых условиях. Как результат получается анизотропная сталь, где ребра кубической решетки кристаллов установлены в направлении прокатки. Расположив анизотропную сталь в правильном направлении, можно добиться повышения магнитной проницаемости, одновременно понизив коэрцитивную силу.

Производство электротехнической стали налажено в виде листового проката с шириной полосы 240 – 1000 мм. Металл выпускается рулонами или отдельными листами, длина которых варьируется от 720 до 2000 мм. Толщина электротехнического стального профиля начинается с 0.05 мм и может иметь следующие показатели: 0.1, 0.2, 0.35, 0.5 и 1,0 мм. Кроме того, классификация электротехнических сталей по разновидности продукции допускает следующие виды проката: сортовой и лента резанная.

Марки изотропной тонколистовой стали х/к: 2011, 2012, 2013, 2014, 2015, 2016, 2312, 2411, 2412, 2413, 2414, 2421.

Марки анизотропной тонколистовой стали х/к: 3311 (3411), 3411, 3412, 3413, 3414, 3415, 3404, 3405, 3406, 3407, 3408, 3409.

Свойства электротехнической стали

Ценность легированного кремнием железа обусловлена его улучшенными электромагнитными характеристиками: высокий уровень индукции насыщения, минимизация потерь на гистерезис, а также пониженная коэрцитивной сила. Поскольку анизотропная структура позволяет еще больше улучшить эти свойства, то спрос не текстурованные стали изначально выше.

Вопрос, для каких целей применяют электротехнические стали, находит ответ в наименовании металла. Одно из предназначений сплава — это сердечники в таких устройствах:

  • трансформаторов тока;
  • статоры и роторы электрооборудования;
  • силовых трансформаторов.

Силовой трансформатор

Кроме того, электротехническая сталь – отличный материал для магнитопроводов в составе электрических аппаратов. Понять, почему сердечник трансформатора выполняют из электротехнической стали несложно. Это следует из свойств металла, в частности повышению удельного электрического сопротивления. Это, в свою очередь, приводит к уменьшению потерь мощности от вихревых токов, характерных для сердечника трансформатора. Как результат, повышается общая эффективность устройства, а сам сердечник меньше нагревается.

Еще больше нивелировать потери от вихревых токов, можно уменьшив толщину пластин. Поэтому электротехническая сталь для электродвигателей, в частности сердечников трансформаторов, должна иметь толщину 0.5 мм при частоте 50 Гц. Если источник тока работает на больших частотах, под сердечник используют более толстые листы электротехнической стали: 0.1 или 0.2 мм.

Дополнительные потери энергии в сердечнике трансформатора происходят вследствие гистерезиса – процесса циклического перемагничивания. Сузить петлю гистерезиса, соответственно уменьшить ее площадь приведут к понижению потерь на перемагничивание. Это вторая причина использования электротехнической стали в сердечнике трансформатора.

Поскольку снижение потерь на вихревые токи и гистерезис достигается повышением содержания кремния в металле, сплав с высокой концентрацией Si получил название трансформаторная сталь, характеристики которой лучше подстроены именно под трансформаторы. Выражаясь языком цифр, в производстве мощных трансформаторов использование текстурованной стали позволяет уменьшить уровень потерь на треть. Кроме того, это способствует снижению массы трансформатора на 10% и расхода самого металла на 20%.

Сбор сердечника трансформатора

Кроме трансформаторов, электротехническая сталь, в зависимости от марки применяется для:

  • магнитных цепей при изготовлении электрического оборудования – марки 2212, сернистая изотропная, 20895/20880 АРМКО;
  • электродвигателей и подобных изделий – марка 10895/Э12/АРМКО;
  • прочая электротехническая продукция — марка10880/Э10/АРМКО.

Назначение некоторых марок стали электротехнической:

Марка стали

Назначение
1211, 1212, 1213, 22110 Для якорей и полюсов электрических машин постоянного тока, для роторов и статоров асинхронных двигателей промышленной частоты мощностью до 100 кВт, для магнитопроводов приборов. Пластичность высокая.
1311, 1312 Для роторов и статоров асинхронных двигателей мощностью от 100 до 400 кВт. Пластичность хорошая.
1411, 1412, 2411 Для роторов и статоров асинхронных двигателей мощностью 400 -1000 кВт, маломощных силовых трансформаторов, для двигателей повышенной частоты. Пластичность удовлетворительная.

Основные производители электротехнической стали

Если рассматривать выпуск данного вида металла в мировом масштабе, то основными игроками выступаю восточные страны: Китай и Япония. Их долевой вклад в производстве и потребление электротехнической стали составляет до 50%. Дисбаланс между странами состоит в том, что Китай – основной производитель, тогда как Япония преимущественно экспортирует этот сортамент стали.

Готовая продукция — рулоны электротехнической стали

Россия относится к числу тех государств, где объемы производства металла превышают внутреннее потребление сортамента электротехническая сталь. Цена этого вида продукции на отечественном рынке составляет от 80 до 180 рублей за килограмм. На сегодня РФ сумела выйти на объемы производства данного сортамента металла, которые составляют 10% от общего мирового импорта электротехнической стали. Основными производителями металла на российском рынке выступают:

  • Северсталь;
  • ВИЗ-Сталь;
  • Новолипецкий металлургический комбинат.

Объемы, производимой ими продукции троекратно превосходят потребности внутреннего рынка, что позволять импортировать электротехническую сталь как на Запад: Италия, Швейцария, так и в сторону Востока – Индия. Что касается долю конкретного вида стали в общем объеме, то две трети производственных мощностей ориентированы на выпуск динамного сортамента металла. И только 30% производства – это трансформаторная сталь, цена которой составляет 120 – 180 руб/кг.

В чем заключается явление гистерезиса?

Прежде, чем перейти к физическому толкованию того в чем заключается явление гистерезиса, отметим, что слово гистерезис происходит от греческого слова hysteresis, что в переводе обозначает отставание. В физике таким понятием обозначают явление запаздывания изменения физического параметра, который характеризует внутреннее состояние вещества от изменения другого параметра, который определяет условия внешние. Явление гистерезиса проявляется тогда, когда состояние вещества зависит от внешних условий не только в рассматриваемый момент времени, но и связано с историей состояний. Наибольшее значение в физике играют:

  1. магнитный гистерезис, который проявляется у ферромагнетиков. Так, если намагнитить ферромагнетик до насыщения, и после этого уменьшать напряженность магнитного поля (Формула напряженности электромагнитного поля), то при напряженности магнитного поля равной нулю вещество будет иметь остаточную намагниченность. С явлением остаточного намагничивания связывают существование постоянных магнитов. Намагничение исчезает под воздействием магнитного поля, которое противоположно полю, вызвавшему намагничение. Явление гистерезиса ведет к тому, что намагничение ферромагнетика не является однозначной функцией от напряженности магнитного поля (одному значению напряженности магнитного поля соответствует несколько величин намагниченности). При циклическом изменении напряженности магнитного поля зависимость намагничения от напряженности получают петлю гистерезиса;
  2. диэлектрический гистерезис. Это явление ярко проявляется у сегнетоэлектриков. Для этих веществ связь между векторами поляризованности и напряженности электрического поля не только является нелинейной, но и зависит от предыстории значений напряжения внешнего электрического поля. При увеличении напряженности электрического поля поляризованность растет, достигает насыщения. При уменьшении напряженности внешнего электрического поля поляризованность не становится нулевой. Остается остаточная поляризованность. Для уничтожения остаточной поляризованности, к веществу следует приложить электрическое поле противоположного направления. При циклическом изменении напряженности электрического поля зависимость поляризованности от напряженности даст петлю гистерезиса;
  3. упругий гистерезис. Упругий гистерезис заключается в отставании деформации тела от механического напряжения. В любой момент времени деформация тела зависит от предыстории. Если нагрузка к упругому телу прикладывается циклически, то зависимость деформации от напряжения дает петлю гистерезиса.

Особенности физического явления

Мы же остановимся именно на гистерезисе в электронной технике, связанным с магнитными процессами в различных веществах. Он показывает, как себя ведет тот или другой материал в электромагнитном поле, а это тем самым позволяет строить графики зависимости и снимать какие-то показания сред, в которых находятся эти самые материалы. Например, этот эффект используется в работе терморегулятора.

Рассматривая более подробно понятие гистерезиса и эффект с ним связанный, можно заметить такую особенность. Вещество, обладающее такой особенностью, способно переходить в насыщение. То есть, это то состояние, при котором оно больше не способно накапливать в себе энергию. А при рассмотрении процесса на примере ферромагнитных материалов энергия выражается намагниченностью, которая возникает благодаря имеющейся магнитной связи между молекулами вещества. А они создают магнитные моменты – диполи, которые в обычном состоянии направлены хаотически.

Намагниченность в данном случае – это принятие магнитными моментами определенного направления. Если же они направлены хаотически, то ферромагнетик считается размагниченным. Но когда диполи направлены в одну сторону, то материал намагничен. По степени намагниченности сердечника катушки можно судить о величине магнитного поля, создаваемого током, протекающим по ней.

Мастерам на все руки будет интересна статья о том, как самостоятельно подключить ходовые огни.

Физический процесс при гистерезисе

Чтобы подробно понять процесс гистерезиса, необходимо досконально изучить следующие понятия:

  • Магнитное поле – это среда, которая создается линиями магнитной индукции, образованными током, протекающим по проводнику или созданные строго направленными магнитными моментами в постоянном магните.
  • Вектор магнитной индукции – величина, указывающая направление распространения магнитного поля, обозначается большой буквой В.
  • Намагниченность – состояние вещества, при котором в нем еще остались направленные магнитные диполи. В физике и электротехнике обозначается буквой М.
  • Напряженность магнитного поля – величина, характеризующая разницу между В и М, обозначается буквой Н.

Что касается материалов, в которых лучше всего наблюдается эффект гистерезиса, то таковыми являются именно ферромагнетики. Это смесь химических элементов, которая способна намагничиваться за счет направленности магнитных диполей, поэтому обычно в составе имеются такие металлы, как:

  • железо;
  • кобальт;
  • никель;
  • соединения на их основе.

Чтобы увидеть гистерезис, на катушку с сердечником из ферромагнетика необходимо подать переменное напряжение. При этом от величины его график намагничивания сильно зависеть не будет, потому как эффект зависит напрямую от свойства самого материала и величины магнитной связи между элементами вещества.

Основополагающим моментом при рассмотрении понятия гистерезиса в электронике является как раз магнитная индукция В, созданная вокруг катушки при подаче напряжения. Она определяется по стандартной формуле, как произведение магнитной диэлектрической проницаемости вещества к сумме напряженности и намагниченности поля.

Чтобы понять общий принцип эффекта гистерезиса, необходимо воспользоваться графиком. На нем видна петля намагничивания из состояния полной размагниченности. Участок можно обозначить цифрами 0-1. При достаточной величине напряжения и длительности воздействия магнитного поля на материал график доходит до крайней своей точки по указанной траектории. Процесс осуществляется не по прямой, а по кривой с определенным изгибом, который характеризует свойства материала. Чем больше в веществе магнитных связей между молекулами, тем быстрее он выходит в насыщение.

После снятия напряжения с катушки напряженность магнитного поля падает до нуля. Это участок на графике 1-2. При этом материал за счет направленности магнитных моментов остается намагниченным. Но величина намагниченности несколько ниже, чем при насыщении. Если такой эффект наблюдается в веществе, то оно относится к ферромагнетикам, способным накапливать в себе магнитное поле за счет сильных магнитных связей между молекулами вещества.

Со сменой полярности напряжения, подводимого к катушке, процесс размагничивания продолжается по той же кривой до состояния насыщения. Только в этом случае магнитные моменты диполей будут направлены в обратную сторону. С частотой сети процесс будет периодически повторяться, описывая график, получивший название – петля магнитного гистерезиса.

При многократном намагничивании ферромагнетика меньшей, чем при насыщении напряженностью, то можно получить семейство кривых, из которых можно построить общий график, характеризующий состояние вещества от полного размагниченного до полного намагниченного.

Гистерезис в разных материалах

Гистерезис – это комплексное понятие, характеризующее способность вещества накапливать энергию магнитного поля или другой величины за счет имеющихся магнитных связей между молекулами вещества или особенностей работы системы. Но таким эффектом могут обладать не только сплавы железа, кобальта и никеля. Титанат бария даст несколько иной результат, если его поместить в поле с определенной напряженностью.

Так как он является сегнетоэлектриком, то в нем наблюдается диэлектрический гистерезис. Обратная петля гистерезиса образуется при противоположной полярности подводимого к среде напряжения, а величина противоположного поля, действующего на материал, получило название коэрцитивная сила.

При этом величина поля может предшествовать разным напряженностям, что связано с особенностями фактического состояния диполей – магнитных моментов после прошлого намагничивания. Также на процесс влияют различные примеси, содержащиеся в составе материала. Чем их больше, тем труднее сдвинуть стенки диполей, поэтому остается так называемая остаточная намагниченность.

Что влияет на петлю гистерезиса?

Казалось бы, гистерезис – это больше внутренний эффект, который не виден на поверхности материала, но он сильно зависит не только от типа самого материала, но и от качества и вида его механической обработки. Например, железо переходит в насыщение при напряженности равной 1 э, а сплав магнико достигает своей критической точки только при 580 э. Чем больше дефектов на поверхности материала, тем требуется больше напряженность магнитного поля, чтобы вывести его в насыщение.

В результате намагничивания и размагничивания в материале выделяется тепловая энергия, которая равна площади петли гистерезиса. Также к потерям в ферромагнетике можно отнести действие вихревых токов и магнитной вязкости вещества. Это обычно наблюдается при изменении частоты магнитного поля в большую сторону.

В зависимости от характера поведения ферромагнетика в среде с магнитным полем, различают статический и динамический гистерезис. Первый наблюдается при номинальной частоте напряжения, но с ее ростом площадь графика увеличивается, что приводит и к росту потерь.

Гистерезис в отоплении

Гистерезис определение относится не только к ферромагнетикам, применяемым в электронике. Такой процесс может происходить и в термодинамике. Например, при организации отопления от газового или электрического котла. Регулирующим компонентом в системе является терморегулятор. Но только контролируемой величиной является температура воды в системе.

При ее снижении до заданного уровня котел включается, начиная подогрев до заданной величины. После чего выключается и процесс повторяется в цикле. Если снять показания температуры при нагреве и остывании системы при каждом цикле включения и выключения отопления, то получиться график в виде петли гистерезиса, который и получил название гистерезис котла.

В таких системах гистерезис выражается в температуре. Например, если он составляет 4°С, а температура теплоносителя установлена 18°С, то котел выключится, когда она достигнет значения 22°С. Таким образом, можно настроить любой приемлемый температурный режим в помещениях. А терморегулятор является, по сути, датчиком температуры или термостатом, который включает или выключает отопления при достижении нижнего и верхнего порога, соответственно.

FILED UNDER : Справочник

Страницы