admin / 21.07.2018

Где применяют ионистор

Назначение электронного устройства

Ионисторы (EDLC) — это электронные устройства, которые используются для хранения чрезвычайно больших количеств электрического заряда. Они также известны как суперконденсаторы, двухслойные конденсаторы или ультраконденсаторы. Вместо применения обычного диэлектрика, EDLC используют механизм для хранения электрической энергии — двухслойную ёмкость. Это означает, что они объединяют работу обычных конденсаторов с работой обычной батарей. Ёмкости, достигаемые с использованием этой технологии, могут достигать 12000 F. Для сравнения, ёмкость всей Земли составляет всего около 710 мкФ, что более чем в 15 миллионов раз меньше ёмкости EDLC.

В то время как обычный электростатический конденсатор может иметь высокое максимальное рабочее напряжение, обычное максимальное напряжение заряда EDLC лежит между 2, 5 и 2, 7 вольтами. EDLC — это полярные устройства, то есть они должны быть подключены к цепи правильно, подобно электролитным конденсаторам. Электрические свойства этих устройств, особенно их быстрое зарядное и разрядное время, очень перспективны для многих отраслей промышленности, где они могут полностью заменить батареи.

Конструкция и материалы ионисторов

Рассмотрим подробнее, что такое ионистор. Конструкция EDLC аналогична конструкции электролитических конденсаторов в том, что они состоят из двух фольговых электродов, электролита, сепаратора и фольги. Сепаратор зажат между электродами, фольга свёртывается или складывается в форму, обычно цилиндрическую или прямоугольную. Эта сложенная форма помещается в герметично закрытый корпус, пропитанный электролитом. Электролит в конструкции EDLC, а также электродов, отличается от электролита, используемого в обычных электролитических конденсаторах.

Чтобы сохранить электрический заряд, EDLC использует пористые материалы в качестве разделителей для хранения ионов в порах на атомном уровне. Наиболее распространённым материалом в современных EDLC является активированный уголь. Тот факт, что углерод не является хорошим изолятором, приводит к ограничению максимального рабочего напряжения до 3 В.

Активированный уголь не является идеальным материалом: носители заряда сопоставимы по размеру с порами в материале, а некоторые из них не могут проникать в более мелкие поры, что приводит к утечкам и уменьшению ёмкости хранения.

Одним из наиболее интересных материалов, используемых в исследованиях EDLC, является графен. Это вещество, состоящее из чистого углерода, расположенного в плоском листе толщиной всего один атом. Он чрезвычайно пористый, действует как ионная «губка». Плотность энергии, достигаемая с помощью графена в EDLC, сравнима с плотностями энергии, полученными в батареях.

Однако, несмотря на то что прототипы EDLC графена были сделаны в качестве доказательства будущей концепции, они дорогостоящие и их трудно производить в промышленных объёмах и это обстоятельство существенно тормозит использование данной технологии. Несмотря на это, EDLC из графена является наиболее перспективным кандидатом в будущей технологии ионисторов.

Достоинства и недостатки

Среди достоинств прибора следует выделить следующие:

  1. Время заряда. EDLC имеют время зарядки и разрядки, сравнимое со временем обычных конденсаторов. Из-за низкого внутреннего сопротивления можно добиться высоких токов заряда и разряда. Чтобы достичь полностью заряженного состояния батареи обычно уходит до нескольких часов. Например, как у батареи сотового телефона, в то время как EDLC могут зарядиться менее чем за две минуты.
  2. Удельная мощность. Конкретная мощность батареи или EDLC является мерой, используемой для сравнения различных технологий по выходной мощности, делённой на общую массу устройства. EDLC имеют удельную мощность в 5−10 раз большую, чем у батарей. Например, в то время как литий — ионные батареи имеют удельную мощность 1−3 кВт / кг, удельная мощность типичного EDLC составляет около 10 кВт / кг. Это свойство особенно важно в приложениях, требующих быстрого сброса энергии из устройств хранения.
  3. Жизнеспособность и безопасность цикла. Батареи EDLC более безопасны, чем обычные батареи при неправильном обращении. В то время как батареи могут взрываться из-за чрезмерного нагрева при коротком замыкании, EDLC не нагреваются так сильно по причине низкого внутреннего сопротивления.
  4. EDLC могут заряжаться и разряжаться миллионы раз и отличаются практически неограниченным сроком службы, в то время как батареи имеют цикл жизни в 500 раз и ниже. Это делает EDLC очень полезными в приложениях, где требуются частые хранения и выделения энергии.
  5. Продолжительность жизни EDLC составляет от 10 до 20 лет, при этом ёмкость за 10 лет снижается с 100% до 80%.
  6. Благодаря их низкому эквивалентному сопротивлению EDLC обеспечивают высокую плотность мощности и высокие токи нагрузки для достижения практически мгновенного заряда в секундах. Температурные характеристики также сильны, обеспечивая энергию при температурах до -40 C ° .

EDLC имеют некоторые недостатки:

  1. Одним из недостатков является относительно низкая удельная энергия. Конкретная энергия EDLC является мерой общего количества энергии, хранящейся в устройстве, делённой на её вес. В то время как литий — ионные батареи, обычно используемые в сотовых телефонах, имеют удельную энергию 100−200 Втч/кг, EDLC могут хранить только 5 Вт/кг. Это означает, что EDLC, обладающий такой же ёмкостью, как обычная батарея, будет весить в 40 раз больше.
  2. Линейное напряжение разряда. Например, батарея с номинальным напряжением 2,7 В, когда при 50%-м заряде все равно будет выводиться напряжение, близкое к 2,7 В. EDLC, рассчитанный на 2,7 В при 50%-м заряде, выдаёт ровно половину своего максимального заряда — 1,35 В. Это означает, что выходное напряжение упадёт ниже минимального рабочего напряжения устройства, работающего на EDLC, и оно должно будет отключиться, прежде чем использовать весь заряд в конденсаторе. Решением этой проблемы заключается в использовании DC-преобразователей. Однако этот подход создаёт новые трудности, такие как эффективность и шум.
  3. Они не могут использоваться в качестве постоянного источника питания. Одна ячейка имеет обычно напряжение 2,7 В и если требуется более высокое напряжение, ячейки должны быть соединены последовательно.
  4. Стоимость обычных EDLC в 20 раз выше, чем у Li-ion аккумуляторов. Однако она может быть уменьшена за счёт новых технологий и массового производства ионисторов.

Промышленное применение

Поскольку EDLC занимают область между батареями и конденсаторами, они могут использоваться в самых разных областях. Где применяют ионистор, можно предположить исходя из его назначения. Одним из интересных использований является хранение энергии в динамических тормозных системах в автомобильной промышленности. Заключается в использовании электрического генератора, который преобразует кинетическую энергию в электрическую энергию и сохраняет её в EDLC. Впоследствии эту энергию можно использовать повторно для обеспечения мощности для ускорения.

Другим примером являются приложения с малым энергопотреблением, где высокая пропускная способность не является обязательной, но важно обеспечить высокий жизненный цикл или быструю перезарядку. Такими приложениями являются фотографическая вспышка, MP3-плееры, статические запоминающие устройства, которым требуется источник постоянного напряжения низкой мощности для сохранения информации и т. д.

Возможные будущие приложения EDLC — это сотовые телефоны, ноутбуки, электромобили и все другие устройства, которые в настоящее время работают на батареях. Самым захватывающим преимуществом, с практической точки зрения, является их очень быстрая скорость перезарядки — это означало бы возможность заряжать электрический автомобиль в зарядном устройстве в течение нескольких минут до полной зарядки аккумулятора.

EDLC используются во многих приложениях управления питанием, требующих большого количества быстрых циклов зарядки/разрядки для краткосрочных потребностей в энергии. Некоторые из этих приложений применяются в таких сферах:

  • стабилизация напряжения в системах пуска/останова;
  • электронные дверные замки в случае сбоев питания;
  • регенеративные тормозные системы;
  • микросхема распределения;
  • медицинское оборудование;
  • аккумуляторы энергии;
  • бытовая электроника;
  • кухонные приборы;
  • резервное копирование данных часов в реальном времени;
  • резервная мощность;
  • ветровая энергия:
  • энергоэффективность и регулирование частоты;
  • удалённое питание для датчиков, светодиодов, переключателей;
  • резервная память;
  • подача питания в режиме пакетной передачи.

Направления развития суперконденсаторов

Новые перспективные разработки ионисторов:

  • Суперконденсаторы graphene Skeleton Technology станут ключевыми игроками EDLC. В новых испытаниях на транспортном флоте в Великобритании их используют для превращения дизельных машин в гибриды за счёт мощности от рекуперативного торможения. Система гибридных машин разработана Adgero и Skeleton Technologies под названием UltraBoost. Во время торможения устройство становится генератором, восстанавливая кинетическую энергию, которая, в противном случае была бы потеряна в виде тела. В основе этой технологии лежит банк из пяти мощных суперконденсаторов на основе графена, известных как SkelMod.
  • Zap & Go, стартап в Великобритании, запускает новый тип зарядного устройства специально для деловых путешественников. Он использует суперконденсаторы графена для зарядки телефонов в течение пяти минут.
  • Компания Eaton предлагает решения для суперконденсаторов размером с монету, больших ячеек, небольших цилиндрических ячеек и модулей. Например, его модуль Supercapacitor XLR 48V обеспечивает хранение энергии для мощных систем с частотным зарядом/разгрузкой в гибридных или электрических транспортных средствах, общественном транспорте, погрузочно-разгрузочной технике, тяжёлом оборудовании и морских системах. Модули XLR состоят из 18 отдельных суперконденсаторов Eaton XL60, предназначенных для обеспечения 48, 6 В и 166 F с сопротивлением 5 мА для включения в системы, требующие до 750 В.

  • Суперконденсаторы Maxwell Technologies используются для хранения энергии с восстановительным торможением в системе метро Пекина. Китайская железная дорога Rolling Stock Corp. (CRRC — SRI) использует модули Maxwell 48 — V в двух наборах энергосберегающих устройств регенеративного торможения для линии No 8 системы, городской железнодорожной сети, которая проходит с севера на юг через столицу Китая. Модули Maxwell с 48 В обеспечивают длительный срок службы до 10 лет и быструю зарядку/разрядку. Vishay предлагает 220 EDLC ENYCAP с номинальным напряжением 2,7 В. Он может использоваться в нескольких приложениях, включая резервное питание, поддержку импульсной мощности, устройства хранения энергии для сбора энергии, источники питания микро UPS и восстановление энергии.
  • Линейная технология предлагает LTC3350, резервный контроллер мощности, который может заряжать и контролировать серийный блок до четырёх суперконденсаторов. LTC3350 предназначенный для автомобильных и других транспортных приложений, предлагает следующие функции:
    • Резервное копирование питания путём зарядки банка до четырёх суперконденсаторов в случае сбоя питания. Может работать с входным напряжением от 4,5 до 35 В и более 10 А заряда резервного тока.
    • Балансировка и защита от перенапряжения для серии суперконденсаторов.
    • Контроль напряжения, тока и температуры в системе.
    • Внутренние балансиры напряжения конденсатора, которые устраняют необходимость в балансных резисторах.

Разработчики ионисторов стараются постоянно их модернизировать и повышать удельную емкость. Очевидно, что в будущем аккумуляторы полностью заменят суперконденсаторы. Результаты исследований калифорнийских ученых показали, что новый тип ионистров уже сегодня превосходит по функциональности свои аналоги в несколько раз.

Что такое суперконденсаторы

Ионисторы, суперконденсаторы, ультраконденсаторы — история создания и развития технологии

7 июня 1962 года, Роберт Райтмаер, химик американской компании Standard Oil Company (SOHIO), располагавшейся в городе Кливленд, штата Огайо, подал заявку на получение патента, где подробно описывался механизм сохранения электрической энергии в конденсаторе, обладающем «двойным электрическим слоем».

Если в обычном конденсаторе алюминиевые обкладки, традиционно, были изолированы слоем диэлектрика, то в предлагаемом изобретателем варианте акцент делался непосредственно на материал обкладок. Электроды должны были иметь различную проводимость: один электрод должен был обладать ионной проводимостью, а другой – электронной.

Таким образом, в процессе заряда конденсатора происходило бы разделение электронов и положительных центров в электронном проводнике, и разделение катионов и анионов в ионном проводнике.

Электронный проводник предлагалось сделать из пористого углерода, тогда ионным проводником мог бы быть водный раствор серной кислоты. Заряд в таком случае сохранялся бы на границе раздела этих особых проводников (тот самый двойной слой). Разность потенциалов этих первых ионисторов могла достигать значения в 1 вольт, а емкость – единиц фарад, ведь теперь расстояние между обкладками было меньше 5 нанометров.

В 1971 году лицензия была передана японской компании NEC, занимающейся к тому моменту всеми направлениями электронной коммуникации. Японцам удалось успешно продвинуть технологию на рынок электроники под названием «Суперконденсатор».

Спустя семь лет, в 1978 году, компания Panasonic, в свою очередь, выпустила «Золотой конденсатор» («Gold Cap»), так же завоевавший успех на этом рынке. Успех был обеспечен удобством применения ионисторов для питания энергозависимой памяти SRAM. Однако эти ионисторы обладали высоким внутренним сопротивлением, которое ограничивало возможность быстрого извлечения энергии, а значит, сильно сужала диапазон сфер применения.

В 1982 году специалисты американского Научно-исследовательского Института Pinnacle (PRI), расположенного в городе Лос-Гатос, штат Калифорния, работая над улучшением материалов электродов и электролитов, разработали ионисторы с чрезвычайно высокой плотностью энергии, которые появились на рынке под названием «PRI Ultracapacitor».

Спустя 10 лет, в 1992 году, компания Maxwell Laboratories (позже сменившая название на Maxwell Technologies, г. Сан-Диего, штат Калифорния, США) начала развивать технологию PRI под названием «Boost Caps». Целью теперь стало создание конденсаторов высокой емкости с низким сопротивлением, чтобы получить возможность питания мощного электрооборудования.

Рис. 1. Суперконденсатор DH5U308W60138TH фирмы SAMWHA ELECTRIC

В 1999 году тайванская компания UltraCap Technologies Corp. также начала сотрудничество с PRI, которые разработали к тому времени электродную керамику чрезвычайно большой площади, и к 2001 году на рынок вышел первый высокоемкостной ультраконденсатор производства Тайваня. С этого момента началось активное развитие технологии во многих НИИ мира.

На Российском рынке тоже присутствуют свои игроки, так компания «Ультраконденсаторы Феникс» (ООО «УКФ») является инжиниринговой компанией, специализирующейся на проектировании, разработке, производстве и практическом применении решений и систем на базе суперконденсаторов/ионисторов. Компания работает в плотной связке с лучшими мировыми производителями и активно перенимает их опыт.

Применение ионисторов

Ионисторы на единицы фарад получили заслуженное применение в качестве источников резервного питания во множестве устройств. Начиная с питания таймеров телевизоров и СВЧ-печей, и заканчивая сложными медицинскими приборами. На платах памяти, как правило, установлены ионисторы.

При смене батареи в видео или фотокамере, ионистор поддерживает питание схем памяти, отвечающих за настройки, это же касается музыкальных центров, компьютеров и другой подобной техники. Телефоны, электронные счетчики электроэнергии, охранные системы сигнализации, электронные измерительные приборы и приборы медицинского применения – везде нашли применение суперконденсаторы.

Рис. 2. Суперконденсаторы (ионисторы)

Малые ионисторы на основе органических электролитов обладают максимальным напряжением около 2,5 вольт. Для получения более высоких допустимых напряжений, ионисторы соединяют в батареи, обязательно применяя шунтирующие резисторы.

К преимуществам ионисторов относится: высокая скорость заряда-разряда, устойчивость к сотням тысяч циклов перезаряда по сравнению с аккумуляторами, малый вес по сравнению с электролитическими конденсаторами, низкий уровень токсичности, допустимость разряда до нуля.

Рис. 3. Источник бесперебойного питания на суперконденсаторах

Рис. 4. Суперконденсаторные автомобильные модули

Перспективы

При разработке ионисторов все более и более повышается их удельная емкость, и по всей вероятности, рано или поздно это приведет к полной замене аккумуляторов на суперконденсаторы во многих технических сферах.

Последние исследования группы ученых Калифорнийского университета в Риверсайде показали, что новый тип ионисторов на основе пористой структуры, где частицы оксида рутения нанесены на графен, превосходят лучшие аналоги почти в два раза.

Исследователи обнаружили, что поры «графеновой пены» обладают наноразмерами, подходящими для удержания частиц оксидов переходных металлов. Суперконденсаторы на основе оксида рутения теперь являются самым перспективным из вариантов. Безопасно работающие на водном электролите, они обеспечивают увеличение запасаемой энергии и повышают допустимую силу тока вдвое по сравнению с самыми лучшими из доступных на рынке ионисторов.

Они запасают больше энергии на каждый кубический сантиметр своего объёма, поэтому ими целесообразно будет заменить аккумуляторы. Прежде всего, речь идёт о носимой и имплантируемой электронике, но в перспективе новинка может обосноваться и на персональном электротранспорте.

На частицы никеля послойно осаживают графен, выступающий опорой для углеродных нанотрубок, которые вместе с графеном формируют пористую углеродную структуру. В полученные нанопоры последней из водного раствора проникают частицы оксида рутения диаметром менее 5 нм. Удельная ёмкость ионистора на основе полученной структуры составляет 503 фарад на грамм, что соответствует удельной мощности 128 кВт/кг.

Рис. 4. Зарядное устройство на графеновом суперконденсаторе

Возможность масштабирования этой структуры уже положила начало и создала основу на пути создания идеального средства хранения энергии. Ионисторы на основе «графеновой пены» прошли успешно первые тесты, где показали способность к перезаряду более восьми тысяч раз без ухудшения характеристик.

Андрей Повный

Бывают ситуации, когда реализовать автономное питание на основе одной аккумуляторной батареи не представляется возможным из-за образования больших кратковременных токов. В этом случае совместно использовался высоковольтный конденсатор большой емкости, пока не стали применять ионистор вместо аккумулятора или одновременно с ним.

В работе этого класса приборов заложена технология, благодаря которой создается двойной электрический слой (EDLC), этим они выгодно отличаются от устройств, где для накопления заряда эксплуатируются химические реакции, как обратимые (аккумулятор), так и необратимые (батарея).

Несмотря на то, что ионисторы появились относительно недавно, их изготовление налажено многими производителями как в нашей стране, так и за рубежом, эти радиодетали выпускают такие компании, как: Palm, Epcos, Elna и т.д.

Ионисторы Maxwell

Внутренне устройство

Ионисторы тем отличаются от конденсаторов, что их конструкция не предполагает использование диэлектрика между электродами, при изготовлении последних подбираются вещества, с противоположным потенциалом заряда. Упрощенное устройство этих радиодеталей показано на рисунке.

Устройство классических ионисторов

Условные обозначения:

  • a, b – электроды;
  • с –сепаратор;
  • d – активированный уголь.

От того, какова площадь «обкладки» конденсатора, зависит его емкость, именно с этой целью в качестве электродов в устройствах используется активированный уголь или вспененный углерод, которые помещаются в электролит. Назначение сепаратора – не допустить короткое замыкание электродов.

В качестве электролита может выступать твердый или кристаллический раствор щелочи либо кислоты. Заметим, что в современных изделиях данный тип электролита не используется из-за своей высокой токсичности.

На рисунке ниже в качестве примера изображена конструкция ионисторов серии EN, изготовленных компанией Panasonic.

Конструкция серии EN

На рисунке обозначены:

  • a – электроды (в качестве материала выступает активированный уголь);
  • b, e – верхняя и нижняя часть корпуса;
  • с – сепаратор;
  • d – уплотнительный изолятор.

Положительные и отрицательные стороны

К числу безусловных преимуществ этих устройств относятся следующие качества:

  • разрядка и заряд устройства не занимает много времени, что позволяет их использовать в тех случаях, когда аккумуляторы установить не представляется возможным из-за долгой подзарядки;
  • по сравнению с аккумуляторными батареями у ионисторов значительно больше циклов полного заряда-разряда устройства;
  • чтобы произвести подзарядку, не понадобится специальное зарядное оборудование, следовательно, упрощается обслуживание;
  • радиодетали этого типа гораздо легче аккумуляторов и меньше их по габаритам;
  • широкий диапазон рабочей температуры – от -40 до 70С°;
  • срок эксплуатации во много раз больше, чем его имеют силовые конденсаторы и аккумуляторные батареи.

Как бы ни были хороши эти радиодетали, но у них есть и недостатки, которые несколько усложняют эксплуатацию, а именно:

  • относительно высокая цена на ионисторы приводит к тому, что использование их в технике ведет к ее удорожанию. Как утверждают специалисты, в ближайшем будущем эта проблема будет решена, благодаря развитию новых технологий;
  • низкие параметры номинального напряжения устройств, решением может служить последовательное соединение нескольких элементов (принцип такой же, как при подключении нескольких батареек). В этом случае потребуется установить шунт в виде резистора на каждый компонент;
  • превышение температурного режима (нагрев более 70С°) становится причиной выхода из строя;
  • данный тип радиодеталей не позволяет накапливать достаточно энергии, помимо этого они обладают небольшой энергетической плотностью (то есть не столь мощные, как аккумуляторы), что несколько сужает сферу их применения. Параллельное подключение нескольких элементов позволяет частично справиться с этой проблемой.

Отдельно следует заметить, что суперконденсаторы относятся к элементам, подключение которых требует, чтобы была соблюдена полярность. Нельзя допускать короткое замыкание устройства, поскольку оно станет причиной, из-за которой повысится температура, и радиоэлементу потребуется замена.

Применение

Сфера применения ионисторов довольно обширна, но наиболее часто они используются как аварийный или резервный блок питания для таймера или микросхем памяти в различных устройствах, начиная от телефонов и заканчивая музыкальными центрами, телевизорами, видеокамерами и т.д.

Видео: эффективность в применении ионистора

Делались и довольно экзотические эксперименты по применению суперконденсаторов, в частности, на их основе пытались создать гаусс оружие (электромагнитную пушку).

Типичная схема включения суперконденсаторов, как источников питания, показана на рисунке.

Схема подключения резервного питания

Обозначение на схеме:

U – подключение к основному источнику питания;

D1 – диод, не допускающий утечки заряда ионистора, когда отсутствует основное питание;

R1 – резистор, служит для двух целей:

  • ограничение тока зарядки;
  • исключает перегрузку основного источника питания во время включения напряжения;

C – резервный источник питания на базе ионистора;

Rn – сопротивление нагрузки.

Заметим, что без резистора (обозначение на схеме – R1) можно обойтись, если характеристики источника питания допускают кратковременное повышение тока нагрузки до 250 мА.

Помимо приведенного примера использования в быту, ионисторы могут применяться, чтобы подключить светодиод в маломощном фонарике, при этом зарядка может производиться от энергии солнечной батареи.

Приведем еще один распространенный пример использования данного устройства для запуска двигателя автомобиля. Схема подобной реализации показана на рисунке.

Схема: пусковое устройство для двигателя автомобиля

Данная схема может быть реализована на любом легковом автомобиле, где напряжение бортовой сети 12V, обозначения на рисунке:

  • 1,2, 3 – клеммы подключения (1 к положительному контакту АКБ, 2 – к отрицательному, 3 соединяется с замком зажигания);
  • Кс – замок зажигания;
  • B1 – АКБ автомобиля;
  • K1, K1.1 – контактор и его управляющий ключ;
  • С – суперконденсатор;
  • Rc – резистор, ограничивающий ток зарядки ионистора С.

В схеме используется суперконденсатор (маркировка: 12ПП-15/0,002), у которого следующие характеристики:

  • максимальное номинальное напряжение – 15В;
  • емкость – 216Ф;
  • величина внутреннего сопротивления – 0,0015 Ом;
  • номинальный ток – 2кА.

Перечисленных выше характеристик будет достаточно для запуска двигателя мощностью до 150 л.с. Время зарядки ионистора – не более 5 секунд, после включения стартера в течение первых нескольких секунд основная токовая нагрузка будет идти на суперконденсатор, поскольку внутренне сопротивление у АКБ больше.

Подобное пусковое устройство, в котором используется ионистор, можно купить готовое, но сделать своими руками обойдется значительно дешевле.

FILED UNDER : Справочник

Страницы