admin / 14.01.2019

Атмосферное электричество

Атмосферное электричество.

Рис. 1. Изменение напряжённости электрического поля с высотой.

1) Совокупность электрических явлений и процессов в атмосфере.
2) Раздел физики атмосферы, изучающий электрические явления в атмосфере и её электрические свойства. При исследовании атмосферного электричества изучают электрическое поле в атмосфере, её ионизацию и проводимость, электрические токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и многое другое. Все проявления атмосферного электричества тесно связаны между собой и на их развитие сильно влияют метеорологические факторы — облака, осадки, метели и тому подобное. К области атмосферного электричества обычно относят процессы, происходящие в тропосфере и стратосфере.

Начало атмосферного электричества как науке было положено в 18 веке американским учёным Б. Франклином, экспериментально установившим электрическую природу молнии, и русским учёным М. В. Ломоносовым — автором первой гипотезы, объясняющей электризацию грозовых облаков. В 20 веке были открыты проводящие слои атмосферы, лежащие на высоте более 60—100 км (ионосфера, магнитосфера Земли), установлена электрическая природа полярных сияний и обнаружен ряд других явлений, изучению которых посвящены соответствующие науки, выделившиеся из атмосферного электричества. Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами. Две основные современные теории атмосферного электричества были созданы английским учёным Ч. Вильсоном и советским учёным Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрическое поле атмосферы объясняется всецело электрическими явлениями, происходящими в тропосфере, — поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрических процессов.

Атмосферное электричество данного района зависит от глобальных и локальных факторов. Районы, где отсутствуют скопления аэрозолей и источники сильной ионизации, рассматриваются как зоны «хорошей», или «ненарушенной» погоды, здесь преобладают глобальные факторы. В зонах «нарушенной» погоды (в районах гроз, пыльных бурь, осадков и др.) преобладают локальные факторы.

Электрическое поле атмосферы.

В тропосфере все облака и осадки, туманы, пыль обычно электрически заряжены; даже в чистой атмосфере постоянно существует электрическое поле. Исследования в зонах «хорошей» погоды, начатые в 19 века, показали, что у земной поверхности существует стационарное электрическое поле с напряжённостью «Е», в среднем равной около 130 в/м. Земля при этом имеет отрицательный заряд, равный около 3 105 к, а атмосфера в целом заряжена положительно. Однако при осадках и особенно грозах, метелях, пылевых бурях и тому подобных напряжённость поля может резко менять направление и величину, достигая иногда 1000 в/м. Наибольшие значения «Е» имеет в средних широтах, а к полюсам и экватору убывает. В зонах «хорошей» погоды «Е» с высотой в целом уменьшается, например над океанами. Вблизи земной поверхности, в так называемом слое перемешивания толщиной 300—3000 м, где скапливаются аэрозоли, «Е» может с высотой возрастать (рис. 1). Выше слоя перемешивания «Е» убывает с высотой по экспоненциальному закону и на высоте 10 км не превышает несколько в/м. Это убывание «Е» связано с тем, что в атмосфере содержатся положительные объёмные заряды, плотность которых также быстро убывает с высотой. Разность потенциалов между Землёй и ионосферой составляет 200—250 кв.

Напряжённость электрического поля «Е» меняется во времени. Наряду с локальными суточными и годовыми вариациями «Е» отмечаются синхронные для всех пунктов суточные (см. кривые 1 и 2, рис. 2) и годовые вариации «Е» — так называемые унитарные вариации. Унитарные вариации связаны с изменением электрического заряда Земли в целом, локальные — с изменениями величины и распределения по высоте объёмных электрических зарядов в атмосфере в данном районе.

Электрическая проводимость атмосферы.

Электрическое состояние атмосферы в значительной степени определяется её электрической проводимостью «λ», которая создаётся ионами, находящимися в атмосфере. Наличие ионов в атмосфере и является причиной потери заряда изолированным заряженным телом при соприкосновении с воздухом (явление, открытое в конце 18 веке французским физиком Ш. Кулоном). Электрическая проводимость «λ» зависит от количества ионов, содержащихся в единице объёма (их концентрации), и их подвижности. Основной вклад в «λ» вносят лёгкие ионы, обладающие наибольшей подвижностью u > 10-5м2 сек-1 в-1.

Электрическая проводимость атмосферы очень мала и может сравниться с проводимостью хороших изоляторов. У земной поверхности в среднем λ = (1 — 2)·10-18 ом-1 м-1 и увеличивается с высотой примерно по экспоненциальному закону; на высоте около 30 км «λ» достигает значений, почти в 150 раз больших, чем у земной поверхности. Выше проводимость увеличивается ещё более, причём особенно резко с высот, до которых проникают ионизующие излучения Солнца и где начинается образование ионосферы, проводимость которой приблизительно в 1012 раз больше, чем в атмосфере вблизи земной поверхности.

Основные ионизаторы атмосферы: 1) космические лучи, действующие во всей толще атмосферы; 2) излучение радиоактивных веществ, находящихся в Земле и воздухе; 3) ультрафиолетовое и корпускулярное излучения Солнца, ионизующее действие которых заметно проявляется на высотах более 50—60 км. Концентрация легких; ионов возрастает с увеличением интенсивности ионизации и уменьшением концентрации частиц в атмосфере, поэтому концентрация лёгких ионов растет с высотой. Этот факт в сочетании с увеличением подвижности ионов при уменьшении плотности воздуха объясняет характер изменения «λ» и «Е» с изменением высоты.

Электрический ток в атмосфере.

Рис. 2. Унитарная вариация напряжённости электрического поля.

Движение ионов под действием сил электрического поля создаёт в атмосфере вертикальный ток проводимости in = Eλ, со средней плотностью, равной около (2—3)·10-12 а/м2. Таким образом, в зонах «хорошей» погоды сила тока на всю поверхность Земли составляет около 1800 а. Время, в течение которого заряд Земли за счёт токов проводимости атмосферы уменьшился бы до 1/е ≈ 0,37 от своего первоначального значения, равно ~ 500 сек. Так как заряд Земли в среднем не меняется, то очевидно, что существуют «генераторы» атмосферного электричества, заряжающие Землю. Помимо токов проводимости, в атмосфере текут значительные электрические диффузионные и конвективные токи.

«Генераторы» атмосферного электричества.

«Генераторами» атмосферного электричества в зонах нарушенной погоды являются пылевые бури и извержения вулканов, метели и разбрызгивание воды прибоем и водопадами, облака и осадки, пар и дым промышленных источников и т. д. При почти всех перечисленных явлениях электризация может проявляться весьма бурно: извержение вулканов, песчаные бури и даже метели приводят иногда к образованию молний, всё же наибольший вклад в электризацию атмосферы вносят облака и осадки.

По мере укрупнения частиц облака, увеличения его толщины, усиления осадков из него растет его электризация. Так, в слоистых и слоисто-кучевых облаках плотность объёмных зарядов ρ ≈ 3 10-12 к/км3, что приблизительно в 10 раз превышает их плотность в чистой атмосфере, а в грозовых облаках r доходит до 3·10-8 к/м3. Облака могут быть заряжены положительно в верхней части и отрицательно в нижней, но могут иметь и противоположную полярность, а также преимущественный заряд одного знака. Плотность тока осадков на Землю из слоисто-дождевых облаков ioc = 10-12 а/м2, в то время как из грозовых ioc = 10-9а/м2. Полная сила тока, текущего на Землю от одного грозового облака, в средних широтах равна около — (0,01—0,1) а, а ближе к экватору до — (0,5—1,0) а. Сила токов, текущих в самих этих облаках, в 10—100 раз больше силы токов, притекающих к Земле. Таким образом, гроза в электрическом отношении подобна короткозамкнутому генератору.

При высоких значениях электрического поля у земной поверхности порядка 500—1000 в/м начинается электрический разряд с острых вытянутых предметов (травы, деревьев, мачт, труб и т.д.), который иногда становится видимым (так называемые огни святого Эльма, особенно яркие в горах и на море, см. Эльма огни). Возникающие при метелях, ливнях и особенно грозах токи коронирования способствуют обмену зарядами между Землёй и атмосферой.

Таким образом, электрическое поле Земли и ток Земля — атмосфера в зонах хорошей погоды поддерживаются процессами в зонах нарушенной погоды. На земном шаре одновременно существует около 1800 гроз (см. кривую 3, рис. 2); суммарная сила тока от них, заряжающего Землю отрицательным зарядом, доходит до 1000 а. Облака слоистых форм, хотя и менее активные, чем грозовые, но зато покрывающие около половины земной поверхности, также вносят существенный вклад в поддержание электрического поля Земли. Исследования атмосферного электричества позволяют выяснить природу процессов, ведущих к колоссальной электризации грозовых облаков, в целях прогноза и управления ими; выяснить роль электрических сил в образовании облаков и осадков; они дадут возможность снижения электризации самолётов и увеличения безопасности полётов, а также раскрытия тайны образования шаровой молнии.

Френкель Я. И., Теория явлений атмосферного электричества (pdf), Л.—М. 1949; Тверской П. Н., Атмосферное электричество (pdf), Л., 1949; Имянитов И. М., Приборы и методы для изучения электричества атмосферы, М., 1957; Имянитов И. М., Измерение электростатических полей в верхних слоях атмосферы (pdf). 1957; Труды главной геофизической обсерватории им. А.И. Воейкова. Выпуск 10. Атмосферное электричество (pdf). Под редакцией:канд. физ.-мат. наук И.М. Имянитов, канд. физ.-мат. наук В.П. Колоколов.; Имянитов И. М. и Шифрин К. С., Современное состояние исследований атмосферного электричества (pdf), «Успехи физических наук», 1962, т. 76, в. 4, с. 593; Имянитов И. М. и Чубарина Е. В., Электричество свободной атмосферы, Л., 1965; Чалмерс Дж. А., Атмосферное электричество (djvu). Л., 1974; Кашлева Л. В., Атмосферное электричество (pdf), 2008.

Электрические явления в атмосфере

Многочисленные наблюдения показывают, что осадки всех видов несут электрические заряды, размер которых зависит от размера капли, градины или снежинки. При замерзании слабых растворов ряда солей появляется разность потенциалов. Знак заряда льда зависит от типа соли и ее концентрации.

Электрические заряды элементов облака создают электрические поля. Мелкие ледяные частички, заряженные в результате электролизации положительно, сосредоточиваются в верхней части облака, а более крупные кристаллы, заряженные отрицательно, опускаются вниз. Попав в нижнюю часть облака, где температура выше 0°С, они тают и образуют капли воды. В хорошо развитом грозовом облаке в нижней его части развиты мощные турбулентные движения. Здесь происходит разрушение капель, в результате которого мельчайшие отрицательно заряженные капли поднимаются в среднюю часть облака, а крупные капли приобретают положительный заряд и образуют в самой нижней части облака ограниченную область больших положительных объемных зарядов – активный центр грозового облака.

В результате разделения и концентрации противоположных зарядов в грозовом облаке создаются мощные электрические поля, напряженность которых достигает несколько сотен киловольт на 1 км. Это приводит к тому, что между отдельными его частями, а также между облаком и Землей возникают искровые заряды – молнии.

Молния. По своему внешнему виду молнии делятся на линейные, плоские, четочные и шаровые. Наиболее часто возникает линейная молния и ее многочисленными разновидностями, представляющая собой гигантскую искру, иногда сильно разветвленную. Длина такой молнии 2-3 км, а иногда при разрядке между облаками — 15-20 км.

Такая молния состоит из ряда разрядов (импульсов), следующих друг за другом. Число импульсов бывает разным: чаще всего 1-5, реже – до нескольких десятков. Время между ними исчисляется сотыми долями секунды, общая продолжительность молнии около 0,2 с. Диаметр ее канала в среднем 16-20 см, иногда 40 см, сила тока в канале — сотни килоампер, а мгновенная мощность — миллионы киловатт. Температура стенок газового канала, по которому происходит разряд, мгновенно повышается до 20 х 103°К. Вода внутри канала разлагается на водород и кислород – образуется гремучий газ.

Быстрое нагревание воздуха в канале молнии вызывает резкое расширение воздуха, в результате возникают звуковые колебания — гром. Глухие раскаты грома относятся к звукам, имеющим небольшую частоту колебаний: большинство характеризуется частотой не более 100 Гц, а некоторые имеют лишь 2-5 Гц. Но так как молния имеет в длину несколько километров, то звуковые колебания приходят к наблюдателю не одновременно, а последовательно от различных участков молнии, что создает впечатление длительного грохота, раската грома. Кроме того, звуковые волны, отражаясь от облаков, земной поверхности, стены падающего дождя, усиливают громовые раскаты.

Гром представляет собой звук очень большой интенсивности, однако максимальное расстояние, на котором еще можно его услышать, редко превышает 25-30 км, что значительно меньше дальности слышимости артиллерийской канонады. Объясняется это двумя причинами: во-первых, быстрым затуханием звука в дожде и, во-вторых, рефракцией звука, обусловленной быстрым понижением температуры воздуха с высотой, имеющим место во время грозы.

По интервалу времени t (в секундах) между появлением молнии и приходом к наблюдателю звуковых волн, вызванных ею, можно определить расстояние до молнии по формуле Д = t/3 км. При разряде молния обычно сначала движется зигзагообразно, а затем по мере приближения к земле ее траектория выпрямляется. Молния стремится к более возвышенным точкам земной поверхности и к местам, где земная кора обладает большей электропроводностью. Поэтому она может ударить и в низины.

Удар молнии в судно может привести к возникновению пожара, к потерям личного состава. При разряде молнии на антенну может выйти из строя сама антенна, а также радиоприемные и передающие устройства. При мощных электрических разрядах магнитные приборы могут потерять свои свойства и даже перемагнититься. Для защиты от молнии на судах применяют различного типа молниеотводы.

В течение суток на поверхности Земли протекает около 50 000 гроз. Однако грозы по земному шару распределены весьма неравномерно. Особенно много их в тропических и субтропических зонах; в средних широтах на морском побережье они обычно наблюдаются только летом, а в океанах – и зимой. Грозы чаще развиваются во второй половине дня, реже – утром и вечером.

Атмосферики. Под этим термином понимают электромагнитные колебаний в диапазоне радиочастот, возникающие в атмосфере в виде нерегулярных (апериодических) и кратковременных импульсов. Атмосферики создаются грозовыми разрядами: канал молнии является своего рода радиопередатчиком. Распространяясь от места своего возникновения, они действуют на радиоприемные устройства, создавая шумы, которые в обиходе называют атмосфериками. Атмосферики могут прослушиваться в местах, находящихся за несколько тысяч миль от очага образования. В то же время значительное их усиление свидетельствует о приближении холодного фронта или вообще неустойчивой воздушной массы, приносящей ухудшение погоды. Частые и сильные атмосферики при плавании в тропической зоне являются признаком приближения тропического циклона.

Огни Эльма. Если атмосфера в сильной степени насыщена электричеством и напряжение электрического поля в ней достигает до 80 000 – 100 000 вольт/метр, то из металлических остриев, мачт, рей и других заостренных предметов происходит истечение электричества – тихий электрический разряд в виде светящихся кистей.

Огни Эльма чаще всего наблюдаются во время шквалов и гроз.

Полярные сияния. Солнце в периоды своей усиленной деятельности выбрасывает громадное количество заряженных электричеством частиц, которые достигают Земли через 1 ¸ 3 дня. Эти частицы, пронизывая разреженные верхние слои воздуха, вызывают в них свечение, называемое полярными сияниями («аврора»).

Цвет полярных сияний большей частью беловатый с различными оттенками (желтоватые, красноватые, реже фиолетовые).

Полярные сияния могут иметь разнообразную форму в виде дуг, полос, драпри (занавесей), лучей и т.д.

Лучисные и пылающие сияния сопровождаются магнитными бурями, при этом нарушается работа магнитных компасов и радиоприборов. Полярные сияния могут наблюдаться на различных высотах.

Сияния в виде дуг достигают высоты до 1000 км, высота других сияний меньше, обычно от 100 до 250 км.

Дата добавления: 2016-08-06; просмотров: 3347;

Опыты известных ученых

Одним из первых этой проблемой заинтересовался Никола Тесла. Он планировал перевести добычу электроэнергии из воздуха на промышленную основу. Большинство опытов Николы Тесла были посвящены свободной форме электричества. В качестве основной причины его появления из ниоткуда, он считал солнечную энергию.

В результате изучения свободной энергии, Тесла создал прибор, который позволял бы получать электрическую энергию напрямую из земли и воздуха. Предусматривалась и передача полученной энергии на расстояние. Данное изобретение было запатентовано под наименованием аппарата, использующего излучающую энергию.

Уже в наше время изобретателем Стивеном Марком было создано устройство, производящее электроэнергию в достаточном количестве. Оно получило название тороидального генератора, способного эффективно запитывать различные виды потребителей, в том числе, лампы накаливания и даже сложные бытовые приборы. Данный генератор способен работать в течение длительного времени и не требует какой-либо внешней подпитки. Его основным принципом работы служат резонансные частоты, магнитные вихри и токовые удары в металле.

FILED UNDER : Справочник

Submit a Comment

Must be required * marked fields.

:*
:*